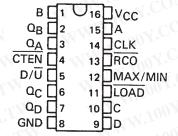
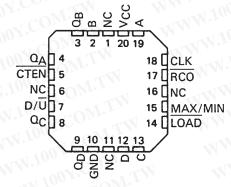
SN54190, SN54191, SN54LS190, SN54LS191, SN74190, SN74191, SN74LS190, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 - DECEMBER 1972 - REVISED MARCH 1988


- Counts 8-4-2-1 BCD or Binary
- Single Down/Up Count Control Line
- Count Enable Control Input
- Ripple Clock Output for Cascading
- Asynchronously Presettable with Load Control
- Parallel Outputs
- Cascadable for n-Bit Applications

		TYPICAL	
ТҮРЕ	AVERAGE PROPAGATION DELAY	MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
190,191	20 ns	25MHz	325mW
'LS190,'LS191	20 ns	25MHz	100mW


description

The '190, 'LS190, '191, and 'LS191 are synchronous, reversible up/down counters having a complexity of 58 equivalent gates. The '191 and 'LS191 are 4-bit binary counters and the '190 and 'LS190 are BCD counters. Synchronous operation is provided by having all flipflops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

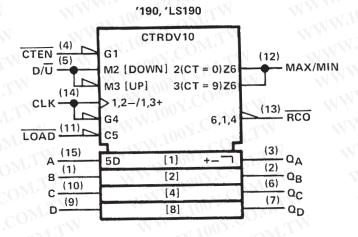
SN54190, SN54191, SN54LS190, SN54LS191 . . . J PACKAGE SN74190, SN74191 . . . N PACKAGE SN74LS190, SN74LS191 . . . D OR N PACKAGE (TOP VIEW)

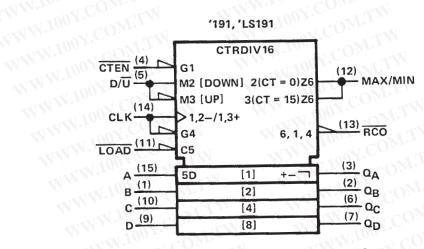
SN54LS190, SN54LS191 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The outputs of the four master-slave flip-flops are triggered on a low-to-high transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter count up and when high, it counts down. A false clock may occur if the down/up input changes while the clock is low. A false ripple carry may occur if both the clock and enable are low and the down/up input is high during a load pulse.

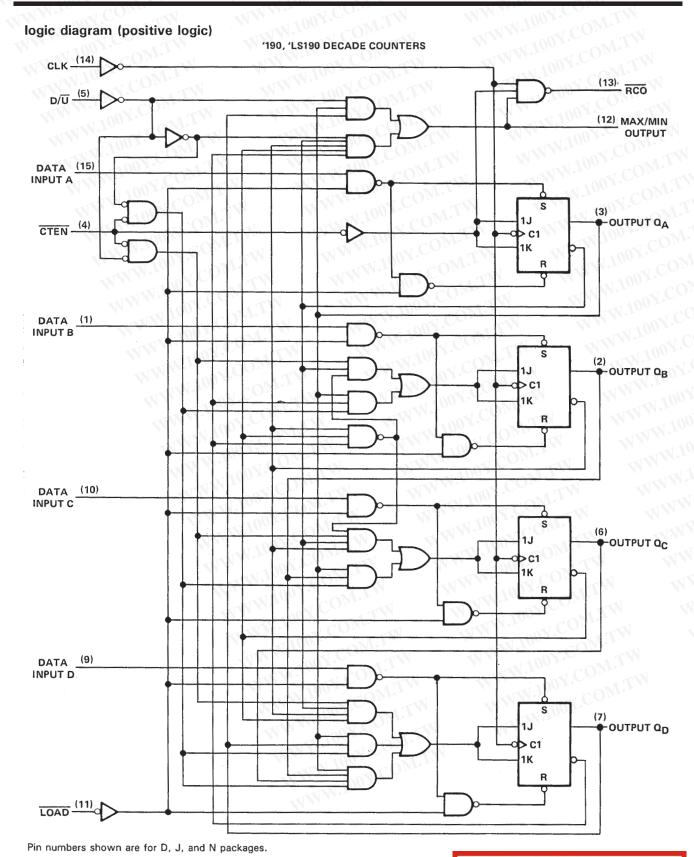
These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.


The clock, down/up, and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers, etc., required for long parallel words.

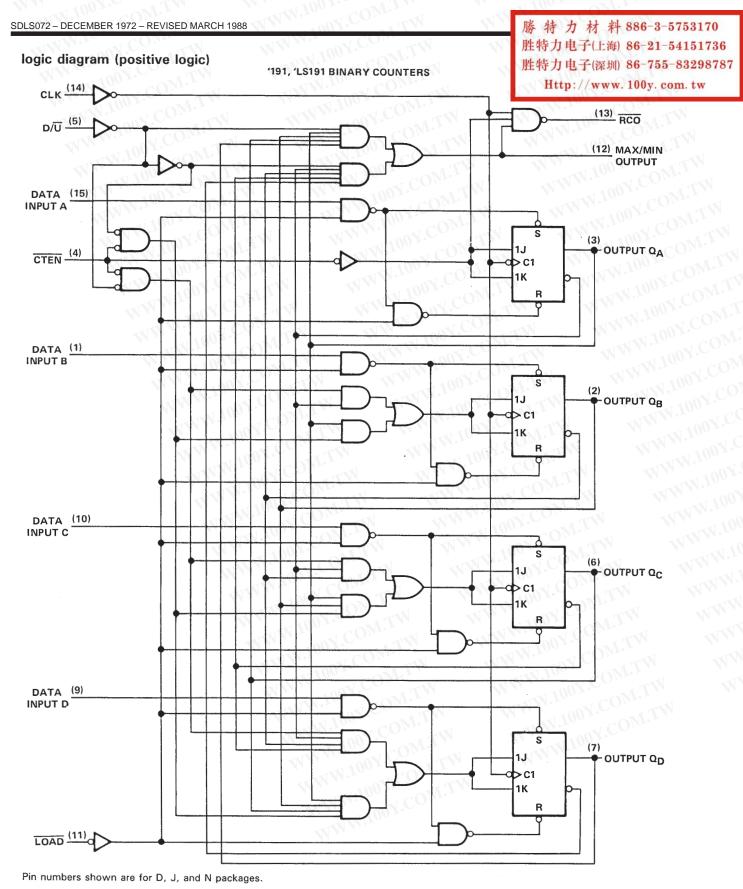

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Series 54' and 54LS' are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74' and 74LS' are characterized for operation from 0°C to 70°C.

logic symbols†



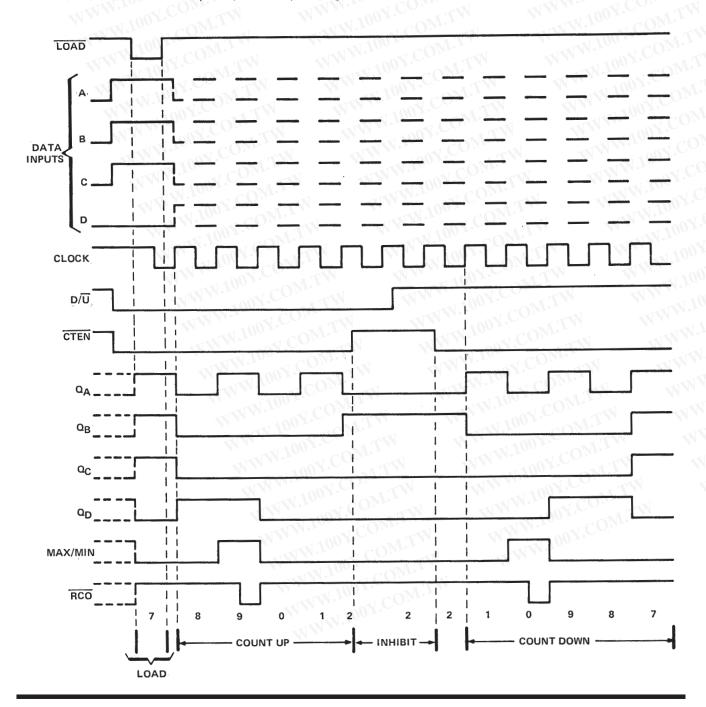
[†] These symbols are accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.T

WWW.100Y.CO

TEXAS

SN54191, SN54LS191, SN74191, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

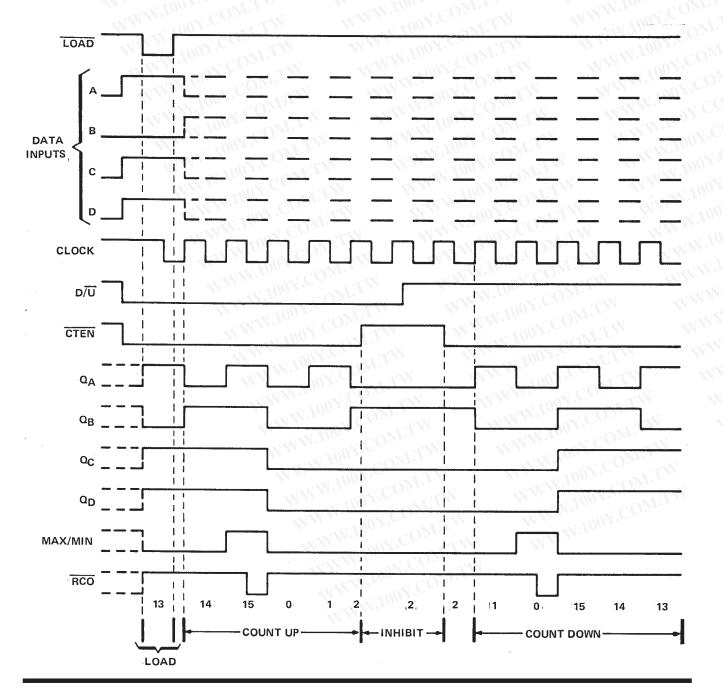


'190, 'LS190 DECADE COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to BCD seven.
- 2. Count up to eight, nine (maximum), zero, one, and two.
- 3. Inhibit.
- 4. Count down to one, zero (minimum), nine, eight, and seven.



'191, 'LS191 BINARY COUNTERS

pical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen.
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two.
- 3. Inhihit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SN54190, SN54191, SN54LS190, SN54LS191, SN74190, SN74191, SN74LS190, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .		J. C.C.	14,		c N				\sqrt{N}	٠.		1	.0	903	٠.,	. 7 V
Input voltage: SN54', SN74' Circuit	s		·1	1.1	٧.			٦.	. 1	Ń.	10	U.			Λ	. 5.5 V
SN54LS', SN74LS' C	Circuits	. V. C	O ₂		C.V			W	W			00	٧.			. 7 V
Operating free-air temperature range	e: SN54', SN54LS	'Circuit	ts .	M)	e i e		١.		IV.	1.7	.00		- 55	°C to	125°C
WW TOOK CONTRACTIVE	SN74', SN74LS															
Storage temperature range	WW.															150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	W. C.	TW WW. 1007.	SN54	190, SN	V54191	SN74	UNIT		
			MIN	NOM	MAX	MIN	NOM	MAX	DIVIT
Vcc	Supply voltage	OM:11/	4.5	5	5.5	4.75	5	5.25	V
Іон 🔨	High-level output	High-level output current			- 0.8			- 0.8	mA
loL	Low-level output	Low-level output current					WW	16	mA
fclock	Input clock frequ	0		20	0		20	MHz	
tw(clock)	Width of clock in	Width of clock input pulse			TW	25		V V V	ns
tw(load)	Width of load inp	ut pulse	35	Co_{λ}	TV	35	11	11/1/11	ns
	Satura timo	Data, high or low (See Figure 1 and 2)	20	- c0	11.	20			ns
t _{su}	Setup time Load inactive state		20		Ti	20		Mai	LT 10
thold	Data hold time	COM.	0	V.C	DIAM	0		WW	ns
TA	Operating free-air	temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		190, SN	54191	SN74			
	PARAMETER	TEST CONDITIONS!	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage	V _{CC} = MIN	2	101.	-01	2			V
VIL	Low-level input voltage	V _{CC} = MIN	N	You.	0.8		N	0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I ₁ = -12 mA		In	-1.5	Mrs	- 1	-1.5	V
V _{OH}	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -0.8 mA	2.4	3.4	V.C	2.4	3.4		V
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA	WW	0.2	0.4	ON	0.2	0.4	V
II	High-level input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V	WV	NW.	1001	CO	M.T	1	mA
ΊΗ	at any input except enable			INV	40	V.C	OM.	40	μА
ш	High-level input current at enable input	V _{CC} = MAX, V _I = 2.4 V		WW	120	07.		120	μΑ
Low-level input current at any input except enable		VI-100X-CO-		WV	-1.6	1001	-1 C C	-1.6	mA
IIL	Low-level input current at enable input	V _{CC} = MAX, V _I = 0.4 V	V	N.	-4.8	1700		-4.8	mA
los	Short-circuit output current§	V _{CC} = MAX	-20		-65	-18		-65	mA
1CC	Supply current	VCC = MAX, See Note 2	7	65	99		65	105	mA

[†] For conditions shown as MAX or MIN, use appropriate value specified under recommended operating conditions.

NOTE 2: I_{CC} is measured with all inputs grounded and all outputs open.

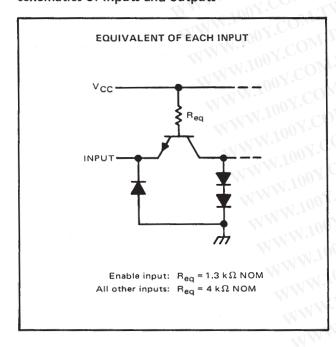
 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

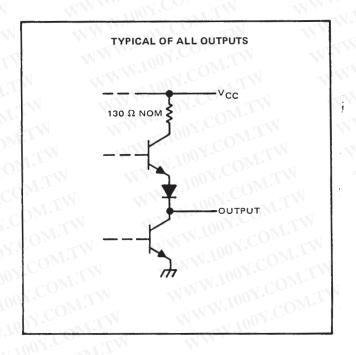
[§] Not more than one output should be shorted at a time.

SN54190, SN54191, SN74190, SN74191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 - DECEMBER 1972 - REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$


	FROM	то		TV.Y.	7.		
PARAMETER†	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNI.
f _{max}	OM	MAN	COMP. TIME	20	25	V.CU	MH
^t PLH	Load	Q_A, Q_B, Q_C, Q_D			22	33	ns
tPHL TPHL	CLOad	dA, dB, dC, dD			33	50	115
^t PLH	Data A, B, C, D	Q_A, Q_B, Q_C, Q_D	$C_L = 15 pF$, $R_L = 400 \Omega$, See Figures 1 and 3 thru 7		14	22	ns
tPHL t	Data A, B, C, D	α _A , α _B , α _C , α _D			35	50	113
[†] PLH	CLK	Q _A , Q _B , Q _C , Q _D			13	20	
tPHL	COM			*31	16	24	ns
tPLH	CLK			77	16	24	
^t PHL	CLK	α _A , α _B , α _C , α _D			24	36	ns
^t PLH .	CLK COM	Max/Min			28	42	0.50
^t PHL	CLK.	Wax/With	W.100X.COM.TW		37	52	ns
tPLH	D/Ū	7000 WW			30	45	00
[†] PHL	LING	D/U RCO		30	45	ns	
^t PLH	D/Ū	Max/Min	1100Y. M.TW		21	33	10
^t PHL	D/O	IVIAX/IVIIII	MM. OY COM	N .	22	33	ns


[†]f_{max} ≡ maximum clock frequency

tpLH ≡ propagation delay time, low-to-high-level output

tpHL ≡ propagation delay time, high-to-low-level output

schematics of inputs and outputs

recommended operating conditions

MW.	OON COMITY WANN TON TOWN TO		N54LS1 N54LS1		S	UNIT		
	100 r. COM: 1	MIN	MOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
ГОН	High-level output current			- 0.4	N. A.	1007	- 0.4	mA
loL	Low-level output current		ĸ1	4	WW	.10	8	mA
fclock	Clock frequency	0	4	20	0	1.100	20	MHz
tw(clock)	Width of clock input pulse	25		1	25	- 10	O.Y.C.	ns
tw(load)	Width of load input pulse	35	-31		35	11.2	~1 C	ns
t _{su}	Data setup time (See Figures 1 and 2)	20	TAI		20	-1XV.)	00	ns
t _{su}	Load inactive state setup time	30	TW		30		1007	ns
^t h	Data hold time	5	1.0	1	5	W		ns
th	Enable hold time	0	M.T.		0	-1	1.100	ns
^t enable	Count enable time (see Note 3)	40		W	40	MAN.	100	ns
TA	Operating free-air temperature	- 55	Mr.,	125	0	- TVV	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TES	TEST CONDITIONS [†]			N54LS19 N54LS1	-	SN74LS190 SN74LS191			UNIT
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	700
VIH	High-level input voltag	ge	MY.C						2		177	V
VIL	Low-level input voltage	je 💮	· * COM					0.7	Ń	-	0.8	٧
VIK	Input clamp voltage	1	V _{CC} = MIN,	$I_1 = -18 \text{ mA}$		100		-1.5	-1		-1.5	V
VOH	High-level output volt	age	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{1H} = 2 V, I _{OH} = -400 μA	WW	2.5	3.4	OM.T	2.7	3.4		V
VoL	Low-level output volta	age	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{1H} = 2 V,	$I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	W.Y	0.25	0.4	44	0.25	0.4	V
1.	High-level input	Enable	WW. 100X.	W. LOOY.CO. LTW		N.A.	1007	0.3	M.T	N	0.3	
l _l	current at maximum input voltage	Others	V _{CC} = MAX,	V ₁ = 7 V		NA.	N.100	0.1	M	LM	0.1	mA
	High-level	Enable	WW	Y.C.	N	MAI	×1 10	60	-31	TW	60	
ΙН	input current	Others	V _{CC} = MAX,	$V_1 = 2.7 \text{ V}$	V _I = 2.7 V		11.	20	OF	20		μА
1	Low-level	Enable						-1.2			≪ 1−1.2	
HL	input current	Others	V _{CC} = MAX,	$V_1 = 0.4 \text{ V}$		1//	- < 1	-0.4		1.1	-0.4	mA
los	Short-circuit output o	urrent§	V _{CC} = MAX,	CON	W	-20	MY	-100	-20) F 1	-100	mA
Icc	Supply current	***************************************	VCC = MAX,	See Note 2	1.		20	35	-7 (20	35	mA

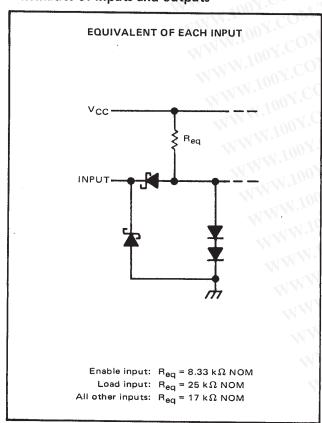
[†]For conditions shown as MAX or MIN, use appropriate value specified under recommended operating conditions for the applicable device type.

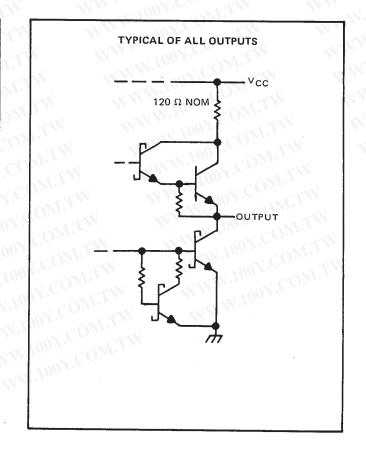
NOTES: 2. ICC is measured with all inputs grounded and all outputs open.

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

 $[\]S$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Minimum count enable time is the interval immediately preceding the rising edge of the clock pulse during which interval the count enable input must be low to ensure counting.

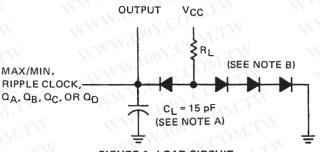

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

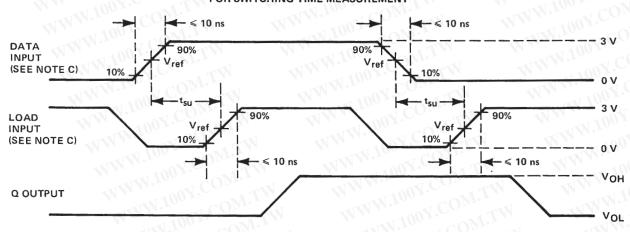
PARAMETER†	FROM	TO	of Curin Louis	'LS	S191		
PARAIVIETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNI.
f _{max}	COM	11/1/	TO THE M	20	25	1.0	MHz
tPLH	Load	$\Omega_A, \Omega_B, \Omega_C, \Omega_D$		NV	22	33	D*
t _{PHL}	Load	ay, ag, ac, ap	OY.COM.TW		33	50	ns
^t PLH	Data A, B, C, D	$\Omega_{A}, \Omega_{B}, \Omega_{C}, \Omega_{D}$		A V	20	32	
^t PHL 1	Butta 74, 5, 6, 5	ay, ag, ac, ap			27	40	ns
^t PLH	CLK	\overline{RCO} $C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega,$ See Figures 1 and 3 thru 7 Q_A, Q_B, Q_C, Q_D		13	20	7 C	
^t PHL	CLK .				16	24	ns
^t PLH				47	16	24	N.V
^t PHL	10012.				24	36	ns
tPLH (CLK				28	42	003
^t PHL	Victor COM.	Widay(Will)			37	52	ns
^t PLH	D/Ū	700	100x.		30	45	The
^t PHL	MD/O	RCO			30	45	ns
^t PLH	D/Ū	Max/Min	KI.	21	33		
[†] PHL	D/0	DIO MAXIMIN			22	33	ns
^t PLH	WWW.	CTEN RCO				33	
^t PHL	CTEN	nco		- 1	22	33	ns

[†] f_{max} ≡ maximum clock frequency

schematics of inputs and outputs



tpLH ≡ propagation delay time, low-to-high-level output


tpHL = propagation delay time, high-to-low-level output

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

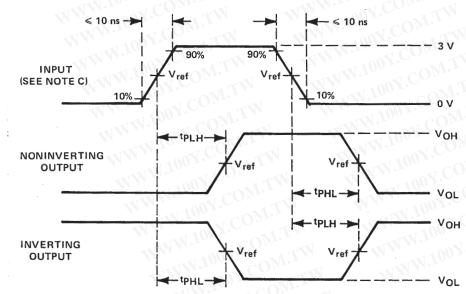
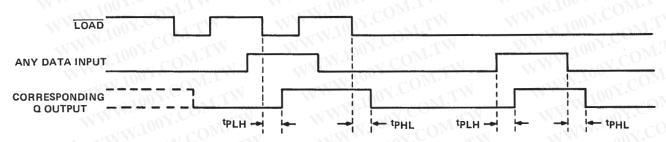

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-LOAD CIRCUIT FOR SWITCHING TIME MEASUREMENT

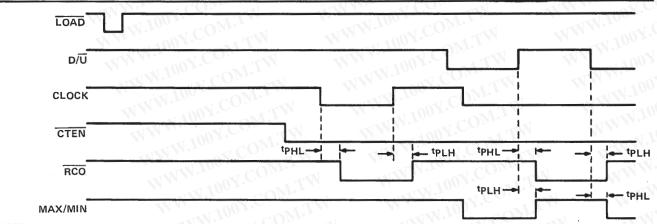
FIGUTE 2-DATA SETUP TIME VOLTAGE WAVEFORMS

See waveform sequences in figures 4 through 7 for propagation times from a specific input to a specific output. For simplication, pulse rise times, reference levels, etc., have not been shown in figures 4 through 7.


FIGURE 3-GENERAL VOLTAGE WAVEFORMS FOR PROPAGATION TIMES

NOTES: A. C_L includes probe and jig capacitance.

- B. All diodes are 1N3064 or equivalent.
- C. The input pulses are supplied by generators having the following characteristics: $Z_{out} = 50 \Omega$, duty cycle $\leq 50\%$, PRR ≤ 1 MHz.
- D. $V_{ref} = 1.5 \text{ V for '190 and '191; 1.3 V for 'LS190 and 'LS191.}$



NOTE E: Conditions on other inputs are irrelevant.

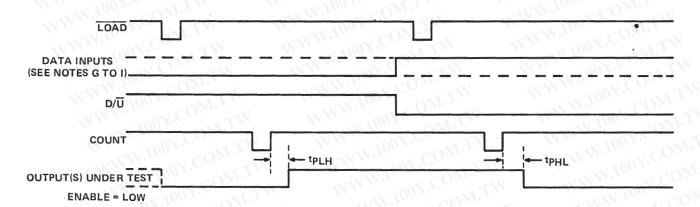
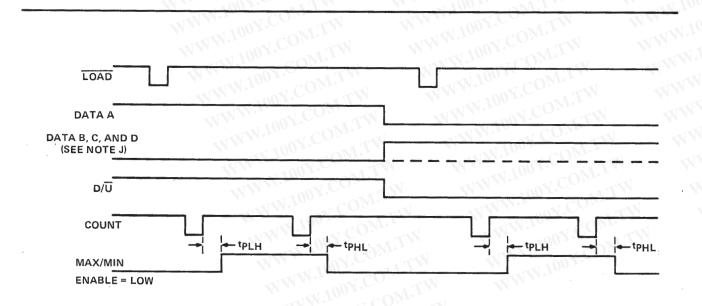

NOTE F: All data inputs are low.

FIGURE 5-ENABLE TO RIPPLE CLOCK, CLOCK TO RIPPLE CLOCK, DOWN/UP TO RIPPLE CLOCK, AND DOWN/UP TO MAX/MIN


PARAMETER MEASUREMENT INFORMATION (continued)

switching characteristics (continued)

- NOTES: G. To test Q_A, Q_B, and Q_C outputs of '190 and 'LS190: Data inputs A, B, and C are shown by the solid line. Data input D is shown by the dashed line.
 - H. To test Q_D output of '190 and 'LS190: Data inputs A and D are shown by the solid line. Data inputs B and C are held at the low logic level.
 - I. To test Q_A , Q_B , Q_C , and Q_D outputs of '191 and 'LS191: All four data inputs are shown by the solid line.

FIGURE 6-CLOCK TO OUTPUT

NOTE J: Data inputs B and C are shown by the dashed line for the '190 and 'LS190 and the solid line for the '191 and 'LS191: Data input D is shown by the solid line for both devices.

FIGURE 7-CLOCK TO MAX/MIN

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated