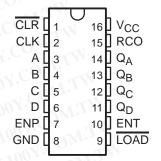
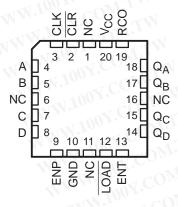
SN54HC163, SN74HC163 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS298A - JANUARY 1996 - REVISED MAY 1997


- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- **Synchronous Counting**
- Synchronously Programmable
- **Package Options Include Plastic** Small-Outline (D) and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description


These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 'HC163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

SN54HC163...J OR W PACKAGE SN74HC163...D OR N PACKAGE (TOP VIEW)

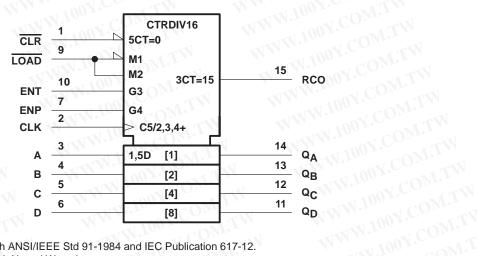
SN54HC163 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The clear function for the 'HC163 is synchronous. A low level at the clear ($\overline{\text{CLR}}$) input sets all four of the flip-flop outputs low after the next low-to-high transition of CLK, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to CLR to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP, ENT, and a ripple-carry output (RCO) are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 with QA high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

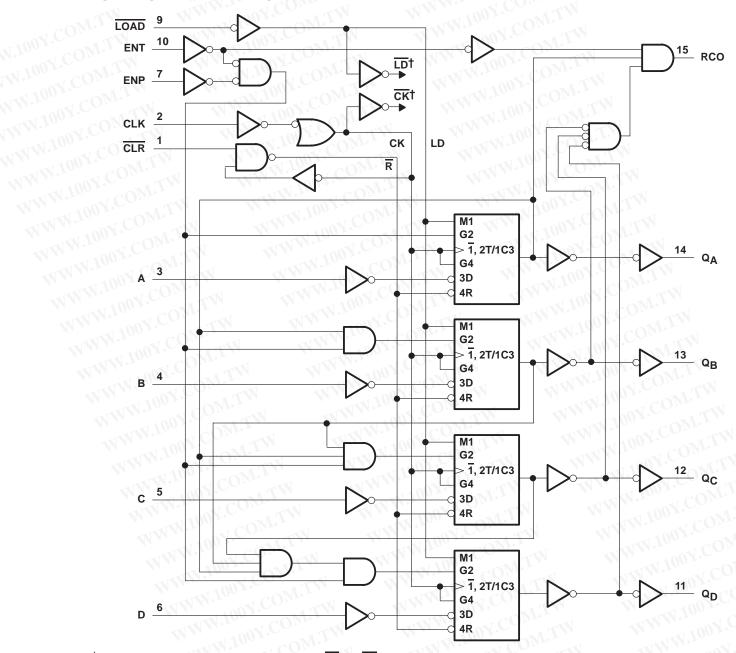


description (continued)

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text{LOAD}}$) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

The SN54HC163 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC163 is characterized for operation from –40°C to 85°C.

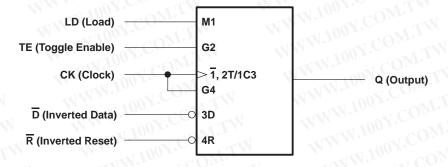
logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, N, and W packages.

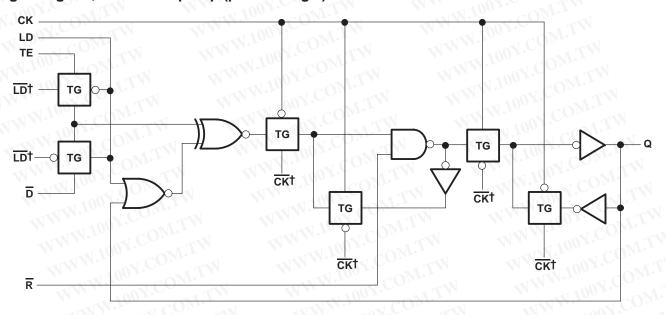
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.CO

logic diagram (positive logic)

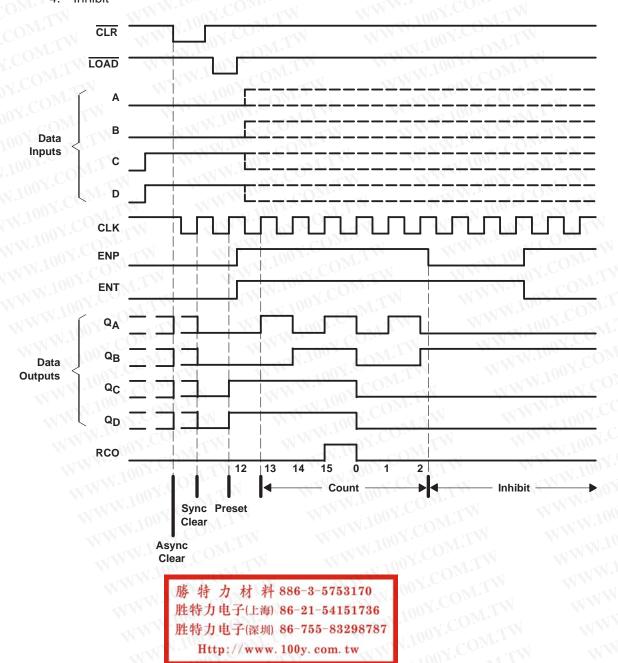


[†] For simplicity, routing of complementary signals \overline{LD} and \overline{CK} is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops.


Pin numbers shown are for the D, J, N, and W packages.

logic symbol, each D/T flip-flop

logic diagram, each D/T flip-flop (positive logic)



^{\dagger} The origins of $\overline{\text{LD}}$ and $\overline{\text{CK}}$ are shown in the logic diagram of the overall device.

typical clear, preset, count, and inhibit sequence

The following sequence is illustrated below:

- 1. Clear outputs to zero (synchronous)
- 2. Preset to binary 12
- 3. Count to 13, 14, 15, 0, 1, and 2
- 4. Inhibit

SN54HC163, SN74HC163 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS298A - JANUARY 1996 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 2): D package	
N package	
Storage temperature range, T _{ota}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

						2 1 174.	- 7		
WAY.CO.	WWW.100Y.CO.IT		N54HC16	63	O SI	174HC16	3	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNII	
Supply voltage	M. Jan COM.	2	5	6	2	5	6	√ V	
100 Y. O. T. T.	V _{CC} = 2 V	1.5		-31	1.5	- c(M_{T}	-1	
High-level input voltage	V _{CC} = 4.5 V	3.15		1/1/4	3.15	01.	M.	V	
	V _{CC} = 6 V	4.2		WV	4.2	ony.C	O.		
V _{IL} Low-level input voltage	V _{CC} = 2 V	0	XI	0.5	0		0.5	TIN	
	Low-level input voltage	V _{CC} = 4.5 V	0		1.35	0	100 -	1.35	V
	VCC = 6 V	0		1.8	0	1 1003	1.8		
Input voltage	WWW.	0	rW	Vcc	0	100	Vcc	V	
Output voltage	TANN TOO	0.0	-XXI	Vcc	0	W.To.	VCC	٧	
W. 1001.	V _{CC} = 2 V	0		1000	0	JW.10	1000	OM	
Input transition (rise and fall) time	V _{CC} = 4.5 V	0	TIV	500	0	1	500	ns	
	VCC = 6 V	(O	T	400	0	MAL	400		
Operating free-air temperature	TANN IO	-55)Mr.	125	-40	WW	85	°C	
	High-level input voltage Low-level input voltage Input voltage Output voltage Input transition (rise and fall) time	High-level input voltage $ \begin{array}{c} V_{CC} = 2 \ V \\ V_{CC} = 4.5 \ V \\ V_{CC} = 6 \ V \\ V_{CC} = 2 \ V \\ V_{CC} = 2 \ V \\ V_{CC} = 4.5 \ V \\ V_{CC} = 6 \ V \\ \end{array} $ Input voltage $ \begin{array}{c} V_{CC} = 2 \ V \\ V_{CC} = 6 \ V \\ \hline \end{array} $ Input transition (rise and fall) time $ \begin{array}{c} V_{CC} = 2 \ V \\ V_{CC} = 4.5 \ V \\ \hline V_{CC} = 6 \ V \\ \hline \end{array} $	$\begin{array}{c c} \text{Supply voltage} & 2 \\ & V_{CC} = 2 \text{V} & 1.5 \\ \hline \\ \text{High-level input voltage} & V_{CC} = 4.5 \text{V} & 3.15 \\ \hline \\ V_{CC} = 6 \text{V} & 4.2 \\ \hline \\ V_{CC} = 2 \text{V} & 0 \\ \hline \\ \text{VCC} = 2 \text{V} & 0 \\ \hline \\ \text{VCC} = 4.5 \text{V} & 0 \\ \hline \\ \text{VCC} = 6 \text{V} & 0 \\ \hline \\ \text{Input voltage} & 0 \\ \hline \\ \text{Output voltage} & 0 \\ \hline \\ \text{Input transition (rise and fall) time} & V_{CC} = 2 \text{V} & 0 \\ \hline \\ \text{VCC} = 4.5 \text{V} & 0 \\ \hline \\ \text{VCC} = 6 \text{V} & 0 \\ \hline \\ \text{OUTPUT transition (rise and fall) time} & 0 \\ \hline \\ \text{VCC} = 4.5 \text{V} & 0 \\ \hline \\ \text{VCC} = 6 \text{V} & 0 \\ $		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MIN NOM MAX MIN Supply voltage	MIN NOM MAX MIN NOM MAX MIN NOM MAX	MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN MA	

[‡] If this device is used in the threshold region (from V_{IL}max = 0.5 V to V_{IH}min = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at t_t = 1000 ns and V_{CC} = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

^{2.} The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

CON	PARAMETER	TEST CO	ONDITIONS	V 1	T	A = 25°C	$C_{\mathbf{O}_{2d}}$	SN54F	IC163	SN74H	IC163	UNIT
1	PARAWETER	TEST CO	DINDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
	WIN	110	W.TW	2 V	1.9	1.998	40	1.9		1.9		
1	TW	MMM	$I_{OH} = -20 \mu A$	4.5 V	4.4	4.499	N.C.	4.4	W	4.4		
d	VOH	VI = VIH or VIL	COM	6 V	5.9	5.999	N.C	5.9	rW	5.9		V
	COM.T.	W	$I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3	JU _ ≤ 1 (3.7	-41	3.84		
L	WILM		$I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8	100 2.	5.2	1.	5.34		
	CO. TW	MM	100Y.Co	2 V	1	0.002	0.1	.00	0.1		0.1	
	A COMP.	WW	I _{OL} = 20 μA	4.5 V	4	0.001	0.1	V.Co.	0.1	N	0.1	
)//	VoL	VI = VIH or VIL	W.100	6 V		0.001	0.1	AT CC	0.1	N.	0.1	V
	OY.COM.TI		$I_{OL} = 4 \text{ mA}$	4.5 V		0.17	0.26	0 2.	0.4	_ T	0.33	
	OUX.COM	W W	I _{OL} = 5.2 mA	6 V		0.15	0.26	001	0.4	IN	0.33	
	ICOM	$V_I = V_{CC}$ or 0	WW. L	6 V		±0.1	±100	. Mar.	±1000	W	±1000	nA
	100 Icc	$V_I = V_{CC}$ or 0,	I _O = 0	6 V	A		8	In	160	T.	80	μΑ
	, OCi	CTW	W . 1001	2 V to 6 V	4	3	10	1.700.	10	Mir	10	pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

W1001.	W.100	1	$T_A = 25^\circ$		SN54H	IC163	SN74F	UNIT	
WW. TOOY.CO. TITW		VCC	MIN	MAX	MIN	MAX	MIN	MAX	UNI
NWW. CON TW	MMA. TOOX.	2 V	V 0	6	0	4.2	0	5	
f _{clock} Clock frequency	frequency	4.5 V	0	31	0	21	0	25	MH:
WW.100Y.COM.TW		6 V	0	36	0	25	0	29	
WW. TIOOY. CONT.TW	1/1/1/100	2 V	80		120	-1XN.1	100	Mor	La
t _W Pulse duration	CLK high or low	4.5 V	16		24	N 1.	20		ns
TWW.100 COM.	WWW.Ioo	6 V	14	N	20	MAN	17	Con	
M. 100 . COM: I.	. WW.1	2 V	150		225		190	4 CO	Mr
WWW.100Y.COM.TV WWW.100Y.COM.T WWW.100Y.COM.	A, B, C, or D	4.5 V	30	LAA	45	W 1	38). (M
	M. M.	6 V	26	W	38	MAA	32	Oxic	ow
	WWW.	2 V	135	TV	205	W	170	ony.C	O_{Z_0}
	LOAD low	4.5 V	27	1.1	41		34	.00	CO_{i}
		6 V	23	M.T.	35	A.	29	700 r	_ d(
	W WY	2 V	170	-11	255	1	215	1100	
t _{SU} Setup time before CLK↑	ENP, ENT	4.5 V	34	$\Omega_{M_{2}}$	51		43	4	ns
1003.	MILL	6 V	29	OM	43		37	M'In	
寺力材料886-3-5753170	ON THE	2 V	160		240		200	.T.V.1	10 r.
力电子(上海) 86-21-54151736	CLR low	4.5 V	32		48		40		OOX
力电子(深圳) 86-755-83298787	COMP	6 V	27	A.Co.	41	N	34	11.	400
Http://www.100y.com.tw	COM	2 V	160	-1 C(240	«XI	200		To.
A day	CLR inactive	4.5 V	32	01.	48	. "	40		N.10
WWW.	Y.CO.	6 V	27	001.	41	IM	34	MA.	-xī 1
WWW.IC	ON COMP.	2 V	0	. and	0	W	0	WV	41.
th Hold time, all synchronous inputs	after CLK1	4.5 V	0	100	0	1.	0	41	ns
N. V.		6 V	0	1 100	0	$M_{i,T,i}$	0	4.	

SN54HC163, SN74HC163 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS298A - JANUARY 1996 - REVISED MAY 1997

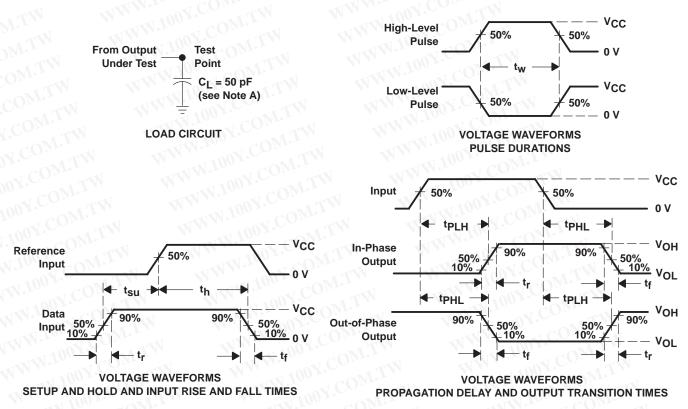
switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	СТО	_V	T	4 = 25°C	. V.C	SN54H	IC163	SN74F	IC163	UNI
	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNI
MITA	WW	1.IV	2 V	6	14	100 r.	4.2	1.1.	5		
f _{max}	MMM.	LOON.CO	4.5 V	31	40	1100	21	VII	25		МН
COM.	Too COM.	6 V	36	44	V. 2	25	11	29			
CLK ^t pd	N.100 COM	2 V		83	215	×1 C	325	XXI	270		
	CIK WW	RCO	4.5 V		24	43	0 2.	65	- 1	54	
		Y. Co.	6 V		20	37	001.6	55	IM	46	
	CLK	WW. POLICO	2 V	V	80	205	. Voo.	310	WT	255	
	Any Q	4.5 V	- % T	25	41	Too	62	1.	51	ns	
	TY WW 1007.	6 V		21	35	V.100	53	M_{II}	43		
	WTS	MAN TOOK!	2 V		62	195	×1 100	295	TIME	245	
	ENT	RCO	4.5 V	TW	17	39	111.	59	OF.	49	
W.100Y.	$M_{1,I}$	WW.100	6 V		14	33	$MM \cdot L$	50	OM.	42	
T 100 Y.	$M_{\perp}T_{M}$	W 100	2 V	V.I.	38	75	W.	110	COM	95	
t _t	UTY	Any	4.5 V	TI	8	15	41	22	.01	19	ns
	CO_{Mr}	-11WW-10	6 V	DIA.	6	13	NIN	19	A.Co.	16	

operating characteristics, $T_{\Delta} = 25^{\circ}C$

	TEST CONDITIONS	Jon. 20Mr.	METER	PARA
60 pl	No load	TION. COLITY	MM.	C _{pd} Power dissipation capacitance
	M. 1. 100X	W.100Y.COM.TW		

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw


WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_Ω = 50 Ω, t_r = 6 ns, t_f = 6 ns.
- C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

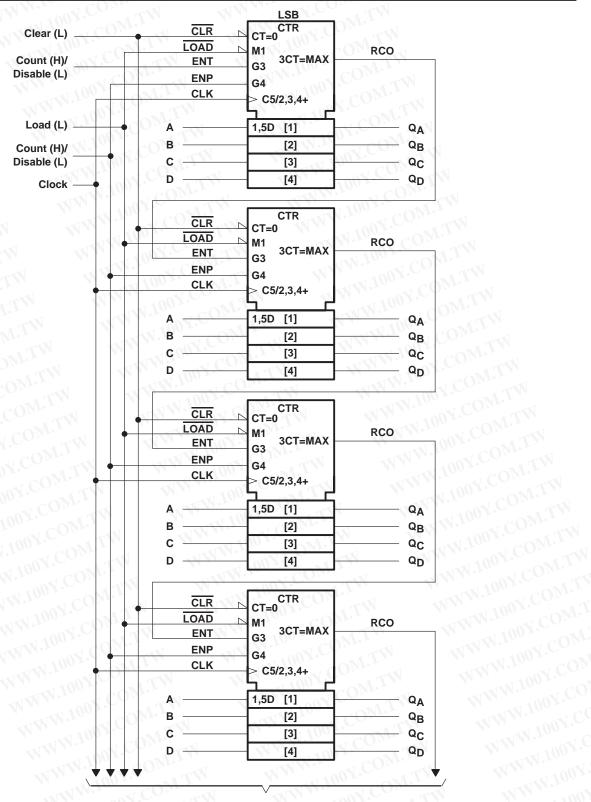
APPLICATION INFORMATION

n-bit synchronous counters

This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The 'HC163 count in binary. Virtually any count mode (modulo-N, N1-to-N2, N1-to-maximum) can be used with this fast look-ahead circuit.

The application circuit shown in Figure 2 is not valid for clock frequencies above 18 MHz (at 25°C and 4.5-V V_{CC}). The reason for this is that there is a glitch that is produced on the second stage's RCO and every succeeding stage's RCO. This glitch is common to all HC vendors that Texas Instruments has evaluated, in addition to the bipolar equivalents (LS, ALS, AS).

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

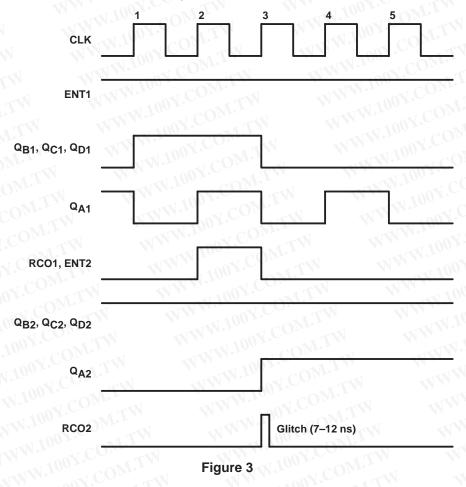

WW.100Y.COM.T

WWW.100Y.COM.

WWW.100Y.COM.TW

100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787


Http://www.100y.com.tw

To More Significant Stages

Figure 2

The glitch on RCO is caused because the propagation delay of the rising edge of Q_A of the second stage is shorter than the propagation delay of the falling edge of ENT. RCO is the product of ENT, Q_A , Q_B , Q_C , and Q_D (ENT \times $Q_A \times Q_B \times Q_C \times Q_D$). The resulting glitch is about 7–12 ns in duration. Figure 3 shows the condition in which the glitch occurs. For simplicity, only two stages are being considered, but the results can be applied to other stages. Q_B , Q_C , and Q_D of the first and second stage are at logic one, and Q_A of both stages are at logic zero (1110 1110) after the first clock pulse. On the rising edge of the second clock pulse, Q_A and RCO of the first stage go high. On the rising edge of the third clock pulse, Q_A and RCO of the first stage return to a low level, and Q_A of the second stage goes to a high level. At this time, the glitch on RCO of the second stage appears because of the race condition inside the chip.

The glitch causes a problem in the next stage (stage three) if the glitch is still present when the next rising clock edge appears (clock pulse 4). To ensure that this does not happen, the clock frequency must be less than the inverse of the sum of the clock-to-RCO propagation delay and the glitch duration (t_g). In other words, $f_{max} = 1/(t_{pd} \text{ CLK-to-RCO} + t_g)$. For example, at 25°C at 4.5-V V_{CC}, the clock-to-RCO propagation delay is 43 ns and the maximum duration of the glitch is 12 ns. Therefore, the maximum clock frequency that the cascaded counters can use is 18 MHz. The following tables contain the f_{clock} , t_w , and f_{max} specifications for applications that use more than two 'HC163 devices cascaded together.

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

" COM.	$\sqrt{N_{M_{*}}}$	T _A =	25°C	SN54F	IC163	SN74F	IC163	UNIT
	V _{CC}	MIN	MAX	MIN	MAX	MIN	MAX	UNII
f _{clock} Clock frequency	2 V	1100	3.6	0	2.5	0	2.9	
	4.5 V	0	18	0	12	0	14	MHz
	6 V	0	21	0	14	0	17	
COM: I. A. M. Ton COM: I.	2 V	140	_ < 1 (200	-XXI	170		
t _W Pulse duration, CLK high or low	4.5 V	28	3 100	40	1.1.	36		ns
	6 V	24	1003	36	TI	30		

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Note 3)

DADAMETED T	ARAMETER FROM	TO Vac	N v	T _A = 25°C		SN54HC163		SN74HC163		UNIT
PARAMETER (INPUT)	(OUTPUT)	Vcc	MIN	MAX	MIN	MAX	MIN	MAX	UNII	
100 - COM-7		Vina COM.	2 V	3.6	WW	2.5	$^{\circ}CO_{L}$	2.9		
f _{max}	IN M.		4.5 V	18	TAT V	12	c0	14	≪ 1	MHz
Y. CO.	TO THAN CONTRACT WY		6 V	21	M.	14	1.	17	N.	

NOTE 3: These limits apply only to applications that use more than two 'HC163 devices cascaded together.

If the 'HC163 are used as a single unit, or only two cascaded together, then the maximum clock frequency that the device can use is not limited because of the glitch. In these situations, the device can be operated at the maximum specifications.

A glitch can appear on RCO of a single 'HC163 device, depending on the relationship of ENT to CLK. Any application that uses RCO to drive any input except an ENT of another cascaded 'HC163 must take this into consideration. WWW.100Y.COM.T

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.T

WWW.100Y.COM.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated