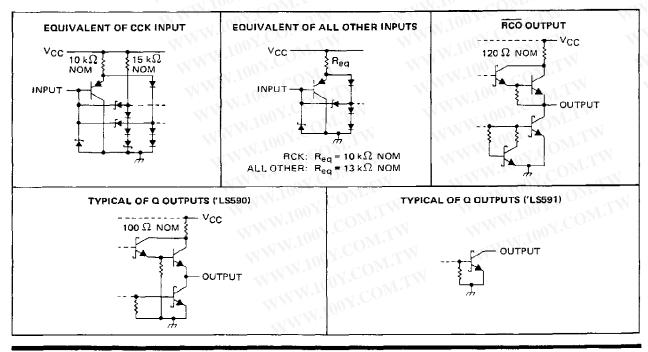
特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

SN54LS590, SN54LS591, SN74LS590, SN74LS591 **8-BIT BINARY COUNTERS WITH OUTPUT REGISTERS**

SDLS003

D2632, JANUARY 1981 - REVISED MARCH 1988

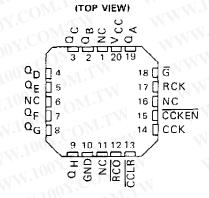

- 8-Bit Counter with Register
- **Parallel Register Outputs**
- Choice of 3-State ('LS590) or Open-Collector ('LS591) Register Outputs
- **Guaranteed Counter Frequency:** DC to 20 MHz

description

These devices each contain an 8-bit binary counter that feeds an 8 bit storage register. The storage register has parallel outputs. Separate clocks are provided for both the binary counter and storage register. The binary counter features a direct clear input CCLR and a count enable input CCKEN. For cascading, a ripple carry output RCO is provided. Expansion is easily accomplished for two stages by connecting RCO of the first stage to CCKEN of the second stage. Cascading for larger count chains can be accomplished by connecting RCO of each stage to CCK of the following stage.

Both the counter and register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the counter state will always be one count ahead of the register. Internal circuitry prevents clocking from the clock enable.

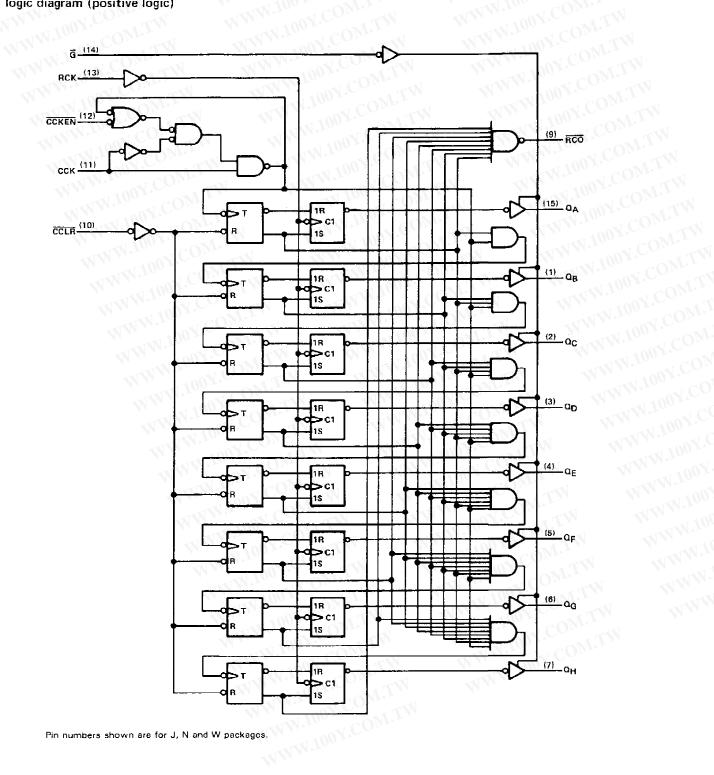
schematics of inputs and outputs


PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standerd warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655012 + DALLAS, TEXAS 75265

SN54LS590, SN54LS591 J SN74LS590, SN74LS591	
(TOP VIEW)	COM
$\begin{array}{c c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0$	VCC QA G RCK CCKEN CCK CCLR RCO

SN54LS590, SN54LS591 ... FK PACKAGE

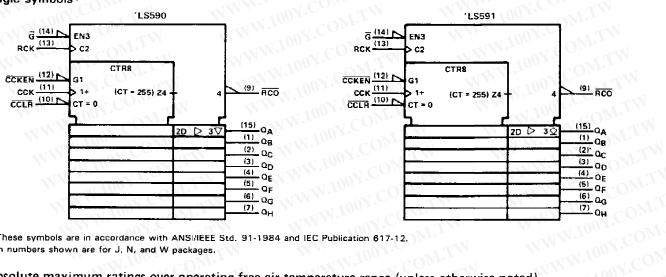


NC - No internal connection

100Y.COM.TW SN54LS590, SN54LS591, SN74LS590, SN74LS591 **8-BIT BINARY COUNTERS WITH OUTPUT REGISTERS**

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

logic diagram (positive logic)


Pin numbers shown are for J, N and W packages.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.COM.TW SN54LS590, SN54LS591, SN74LS590, SN74LS591 **8-BIT BINARY COUNTERS WITH OUTPUT REGISTERS**

logic symbols[†]

ese symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication numbers shown are for J, N, and W packages.	0007-12.
olute maximum ratings over operating free-air temperature	range (unless otherwise noted)
Supply voltage, VCC (see Note 1)	
Input voltage	
Off-state output voltage	5.5 V
Operating free-air temperature range: SN54LS590, SN54LS591	
Storage temperature range	
TE 1: Voltage values are with respect to the network ground terminal.	
commended operating conditions	

recommended operating conditions

		WT	11.1.						L	
				SN54LS		SN74LS'			UNIT	
Vcc	Supply voltage	1002.00	4.5	NOM 5	MAX 5.5	MIN 4.75	NOM 5	MAX 5.25	v	
<u>- чес</u> - Чін	High-level input voltage	CONTRACT OF	4.5	9	5.5	4.75		5.25	v	
VIL	Low-level input voitage		2	AN V	0.7		NI-	0,8	v -	
VOH	High-level output voltage	Q, 'LS591 only			5.5		ant.	5.5	v	
		RCO	+ .	<u> 111</u>				- 1	-	
юн	High-level output current	Q, 'L\$590 only			NLT.	0 2	~0Ì ⁰	- 2.6	mA	
		RCO			8	102.		16	mA	
OL	Low-level output current	Q			12		.00	24		
сск	Counter clock frequency	100 conter	0		20	0		20	MHz	
frck	Register clock frequency	WWW LOOK . CON	0	N	25	0	1.0	25	MHz	
tw(CCK)	Duration of counter clock pu	lse	25			25	V C	0	пѕ	
	Duration of counter clear pul-	se la	20		N 4 - 1	20	0 2	Mon	ns	
^t w(RCK)	Duration of register clock pul	se	20		NW	20	01.		ns –	
	- · · ·	CCKEN low before CCK t	20			20			<u>+</u>	
t _{su}	Setup time	CCLR inactive before CCK†	20			20			ns	
		CCK before RCK1 (see Note 2)	40	*		40			1 -	
^t h	Hold time	CCKEN low after CCK1	0			0			ns	
Τ _A	Operating free-air temperature		- 55		125	0		70	°C	

NOTE 2: This setup time ensures the register will see stable data from the counter outputs. The clocks may be tied together in which case the register state will be one clock pulse behind the counter,

N100Y.COM.TW W.100Y.COM.TW SN54LS590, SN54LS591, SN74LS590, SN74LS591 8-BIT BINARY COUNTERS WITH OUTPUT REGISTERS

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

electrical characteristics over recommended op	erating free-air temperature range (unless otherwise noted)

						9	SN54LS			UNIT			
- F	ARAMETE	R CO	Т	EST CONDITIC	NST CON	MIN	TYP‡	MAX	MIN	TYP‡	MAX		
Vik	10		Vcc = MIN,	J _I = - 18 mA	W.100 c01	1.		- 1.5		1.10	- 1.5	V	
		N.C.			IOH = - 1 mA	2.4	3.2			-11	101.2		
Vон	'LS590 C		1 1.7	V _{IH} = 2V,	1 _{OH} = - 2.6 mA	D M M	- N		2.4	3.1		C V	
	RCO	1002.	VIL = MAX		IOH = - 1 mA	2.4	3.2		2.4	3.2	100 -		
юн	'L\$591 C	100%	V _{CC} = MIN, V _{IL} - MAX	V _{IH} = 2 V,	V _{OH} = 5.5 V,	-ON	TW	Q.1	1	W TAN	0.1	mA	
				N	1 _{0L} = 12 mA		0.25	0.4		0.25	0.4	1.7.	
V	a		V _{CC} = MIN,	V _{IH} = 2 V,	¹ OL = 24 mA	CO	~	N I		0.35	0.5	NVC	
VOL	RCO	VIL = MAX	L.	IQL = 8 mA	0	0.25	0.4		0.25	0.4			
	ALU		N.COM	WT	IOL = 16 mA	1.0	- 1	TN I		0.35	0.5	001	
lozн	'LS590 C	WW.I	V _{CC} = MAX, V _O = 2.7 V	V _{IH} = 2 V,	V _{IL} = MAX,	01.0	Ohr.	20		N	20	μA	
^I 0ZL	′L\$590 Q	MM.	V _{CC} = MAX, V _O = 0.4 V	V _{IH} = 2 V.	VIL = MAX,	001.	COL	- 20		V	- 20	μA	
i i		ANT.	V _{CC} = MAX,	V ₁ = 7 V	AM	100		0.1	<u>N</u>		0.1	mA	
IН			V _{CC} = MAX,	VI = 2.7 V	WW		<1 C	20			20	μA	
	ССК	MA.	Vcc = MAX,	V ₁ = 0.4 V	W.	1100	- 0,8		- 0.8		mA		
IL.	All other	5	VCC - MAA,	0] = 0.4 0	WW		N.C	- 0.2	A.		- 0.2		
	'L\$590 Q		Vcc = MAX, Vo = 0 V			- 30	JU -	- 130	- 30	1	- 130	mA	
losŝ	RCO	1	VCC - MAA,	00-00	N VIV	- 20	001.	- 100	- 20		- 100	1073	
	′LS590	Іссн	WW.Los				33	55		33	55		
		ICCL	V _{CC} = MAX,				44	65	M	44	65		
lcc		lccz	All possible inp	uts grounded,			46	65		46	65	mA	
	'LS591	ССН	All outputs ope				35	55	OV.	35	55		
	20001	ICCL	NW I			N.	42	65	M	42	65		

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MHz ns ns ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns ns ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ns ns
tpHL CCK1 RCO 20 30 25 36 tpLH CCLRI RCO 30 45 32 48 tpLH RCK1 Q 12 18 25 38 tpLH RCK1 Q 12 18 25 38 tpLH RCK1 Q 22 33 28 42 tpLH G4 Q CL=45 pF 25 38 25 38	ns
tPLH RCK1 Q 12 18 25 38 tPHL RCK1 Q RL-667 Ω CL=45 pF 22 33 28 42 tPZH GJ Q RL-667 Ω CL=45 pF 25 38 25 38	
tpHL RCK / Q tpHL GL RL-667 SL CL=45 pF 22 33 28 42 tpZH GL Q RL-667 SL CL=45 pF 25 38 25 38	ns
The $\overline{G_4}$ $\overline{Q_4}$ $\overline{R_L} = 667 \ \Omega_c$ $C_L = 45 \ \rho F$ $25 \ 38$	
	ns
1p21 GH Q 30 45	ns
	ns
t _{PHZ} Gt Q 20 30	ris
$r_{PLZ} = Gt = Q$ $t_{PLZ} = Gt = Q$ $R_L = 667 \Omega$, $C_L = 5 pF$ 25 38	ns
$\frac{t_{PLH}}{\sigma} = \frac{\overline{G} \uparrow \Omega}{\sigma} = \frac{1}{100} \frac{1}{100$	ns
1PHL GI Q HL-88732, CL-48 PF 32 48	ns

TEXAS **INSTRUMENTS** POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

IMPORTANT NOTICE

100Y.COM.TV Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safequards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

> W.100Y.COM.T Copyright © 1996, Texas Instruments Incorporated WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM