features common to all types

- Single 5-V Supply
- 3-State Driver Output Circuitry
- TTL-Compatible Driver Inputs
- TTL-Compatible Receiver Output
- Differential Line Operation
- Receiver Output Strobe (SN55116, SN75116) or Enable (SN75118)
- Designed for Party-Line (Data-Bus) Applications

additional features of the SN55116/SN75116

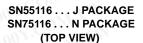
- Choice of Ceramic or Plastic Packages
- Independent Driver and Receiver
- Choice of Open-Collector or Totem-Pole Outputs on Both Driver and Receiver
- Dual Data Inputs on Driver
- Optional Line-Termination Resistor in Receiver
- ±15-V Receiver Common-Mode Capability
- Receiver Frequency Response Control

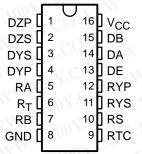
The SN75118 is an SN75116 With 3-State Receiver Output Circuitry

description

These integrated circuits are designed for use in interfacing between TTL-type digital systems and differential data-transmission lines. They are especially useful for party-line (data-bus) applications. Each of these circuit types combine in one package a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver inputs and the receiver outputs are TTL compatible. The driver employed is similar to the SN55113/SN75113 3-state line driver, and the receiver is similar to the SN55115/SN75115 line receiver.

The SN55116/SN75116 and SN75118 circuits offer all the features of the SN55113/SN75113 driver and the SN55115/SN75115 receiver combined. The driver performs the dual input AND and NAND functions when enabled or presents a high impedance to the load when in the disabled state. The driver output stages are similar to TTL totem-pole outputs, but have the current-sink portion separated from the current-sourcing portion and both are brought out to adjacent package terminals. This feature allows the user the option of using the driver in the open-collector output configuration, or, by connecting the adjacent source and sink terminals together, of using the driver in the normal totem-pole output configuration.

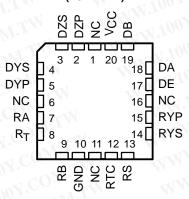

The receiver portion of the SN55116/SN75116 and SN75118 features a differential input circuit having a common-mode voltage range of \pm 15 V. An internal 130- Ω resistor is also provided, which may optionally be used for terminating the transmission line. A frequency response control terminal allows the user to reduce the speed of the receiver or to improve differential noise immunity. The receiver of the SN55116/SN75116 also has an output strobe and a split totem-pole output. The receiver of the SN75118 has an output-enable for the 3-state split totem-pole output. The receiver section of either circuit is independent of the driver section except for the V_{CC} and ground terminals.


The SN55116 is characterized for operation over the full military temperature range of −55°C to 125°C. The SN75116 and SN75118 are characterized for operation from 0°C to 70°C.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



SLLS073C - MAY 1976 - REVISED MARCH 1997



SN75118 . . . N PACKAGE (TOP VIEW)

SN55116 . . . FK PACKAGE (TOP VIEW)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

NC - No internal connection

Function Tables

SN55116, SN75116 , SN75118 DRIVER

ll ll	NPUTS		OUT	PUTS
DE	DA	DB	DY	DZ
L	Х	Х	Z	Z
Н	L	Χ	L	Н
Н	X	L	L	H
Н	Н	Н	H⊸	

SN55116, SN75116, SN75118 RECEIVER

DC/DE	DIFF	OUT	TPUTS RY
RS/RE	INPUT	'116	SN75118
L	Х	H	Z
H	L <	Н	H
Н	Н	, L	N. L

- H = high level ($V_I \ge V_{IH}$ min or V_{ID} more positive than V_{TH} max)
- L = low level ($V_I \le V_{IL}$ max or V_{ID} more negative than V_{TL} max)
- X = irrelevant
- Z = high impedance (off)

RYS (sink)

logic symbol†

RB

RA

RE

RTC

5

R_T 6

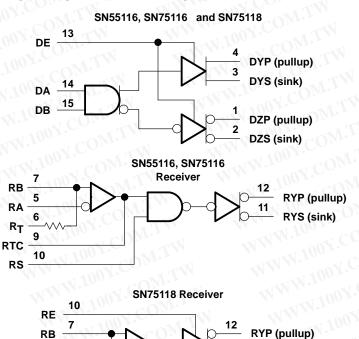
10

9

Rт

ΕN

RESP


SN55116, SN75116 & ▷ \Diamond DYP 13 3 \Diamond DE EN DYS 1 14 DA \Diamond DZP 15 2 DB \Diamond DZS D &⊳ RB 5 RA12 RYP \Diamond 6 RT Rт RYS \Diamond 10 RS 9 RTC **RESP** SN75118 & ▷ \Diamond DYP 3 DYS _13 \Diamond DE ΕN 14 1 DA \Diamond DZP _15 2 \Diamond DB DZS

†These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12

 \Diamond

 \Diamond

logic diagram (positive logic)

617-12.

NOTE: Pin numbers shown for the SN55116 are for the J package, and those shown for the SN75118 are for the N package.

RYP

RYS

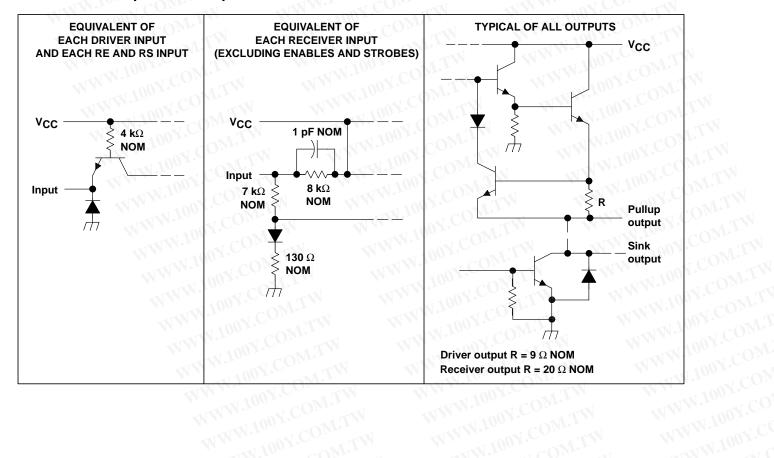
11

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

RA

RT

RTC


6

9

SLLS073C - MAY 1976 - REVISED MARCH 1997

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

schematics of inputs and outputs

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SN55116, SN75116, SN75118 DIFFERENTIAL LINE TRANSCEIVERS

SLLS073C - MAY 1976 - REVISED MARCH 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

WWW.100Y.COM.TW WWW	V.100Y.COM.TW WY	SN55116, SN75116, SN75118	UNIT
Supply voltage, V _{CC} (see Note 1)	W.Ing. COM.	N. 7 COM	V
MAN TOOK. SMITH WY	DA, DB, DE, DI, RE, RS	5.5	. I.
Input voltage, V _I	RA, RB, RT	±25	V
	A and B	M.M. Co.	TV
Off-state voltage applied to open-collector outputs	COM.	12	V

SN55116	SN75116 and SN75118	UNIT
See Diss	ipation Rating	Table
-55 to 125	0 to 70	°C
-65 to 50	-65 to 50	°C
260	M.In	°C
300	300) ∘C
NTN	260	°C
	See Diss -55 to 125 -65 to 50 260	SN55116 and SN75118 See Dissipation Rating -55 to 125 0 to 70 -65 to 50 -65 to 50 260 300 300

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to network ground terminal.

2. In the FK and J packages, SN55116 chip is alloy mounted. The SN75116 and SN75118 chips are glass mounted.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	Y.CO. TIN

recommended operating conditions

PARAM	HETER WILDOY CONT. TW	\$	SN55116	N.100		SN75116 and SN75118	W	UNIT
	WWW.TOOX.CO. TTW	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.5	5	5.5	V
High-level input voltage, VIH	All inputs except differential	2		WW	2		1.	V
Low-level input voltage, V _{IL}	inputs	7	4	0.8	1.100	c0	0.8	V
High level autout aumont 1	Drivers			-40	×1 100	N.O.	-40	Λ
High-level output current, IOH	Receivers	TW		-5	44.	ny.C	-5	mA
I am laval autout aumant I	Drivers			40	111.7		40	Λ
Low-level output current, IOL	Receivers	15		15			mA	
Receiver input voltage, V _I	MM. 100X.00	TILL	N	±15			±15	V
Common-mode receiver input voltage, V	ICR C	1		±15			±15	V
Operating free-air temperature, TA	11 N. 100	-55		125	0		70	°C

SLLS073C - MAY 1976 - REVISED MARCH 1997

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

driver section

	PARAMETE	R COM	EM.	TEST COND	OITIONS†	TW		116, SN7 SN75118		UNIT	
			TW	WW 10	01.00	LTW	MIN	TYP [‡]	MAX	MO	
VIK	Input clamp vol	tage	V _{CC} = MIN,	I _I = -12 mA	OOY.Co	WILL	W.	-0.9	-1.5	V	
	WWW	·IOVICO	TW	T _A = 25°C (SN55		$I_{OH} = -10 \text{ mA}$	2.4	3.4	1007	Co	
Vон	High-level outp	$V_{CC} = MIN$, $V_{IL} = 0.8 \text{ V}$, V_{I		I _{OH} = -40 mA	2	3	100	V.CO			
VOH	nigh-level output voltage		$I_{IH} = 0.8 \text{ V},$	2 V $T_A = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ $I_{OH} = -10 \text{ m}$		I _{OH} = -10 mA	2	WW	W	N.CC	
			COM.TW	(SN55116)		$I_{OH} = -40 \text{ mA}$	1.8	1.8		√ ×1 C	
VOL	Low-level outpu	ıt voltage	$V_{CC} = MIN,$	V _{IH} = 2 V,	V _{IL} = 0.8 V,	I _{OL} = 40 mA		NA.	0.4	00 A	
Vok	Output clamp ve	oltage	$V_{CC} = MAX$,	$I_{O} = -40 \text{ mA},$	DE at 0.8 V	Y.Co. TY	-1.5		-1.5	V	
		MW.Io.	A COM.	T _A = 25°C	WWW	V.COM	N	1	10	1003	
I _{O(off)}		ff-state open-collector VCC = MAX,		TWW.10		200		200	μА		
.0(011)	output current		V _O = 12 V	$T_A = MAX$		SN75116, SN75118	20			W.100	
		W.	$V_{CC} = MAX$,	$V_O = 0$ to V_{CC} ,	DE at 0.8 V,	T _A = 25°C	. 1		±10	M. To	
1	Off-state	WW.	V _{CC} = MAX,	V _O = 0	M. A.	SN55116	1.7		-300	- TSA .1	
loz	output current	(high-impedance-state) output current		DE at 0.8 V,	$V_O = 0.4 \text{ V to } V_C$	CC (V)	SN55116	TIL	N	±150	μΑ
		W	$T_A = MAX$	$V_O = 0$ to V_{CC}	WW	SN75') [1]	W	±20	NAM	
lį	Input current at maximum input voltage	WV	V _{CC} = MAX,	V _I = 5.5 V	WY	MM.100X.C	c_{OM}	TW	1	mA	
lιΗ	High-level input current	Driver or enable input	V _{CC} = MAX,	V _I = 2.4 V		MM.1002	COD	LTV	40	μА	
I _{IL}	Low-level input current		V _{CC} = MAX,	V _I = 0.4 V	N	WWW.100	N.CO	M.T	N-1.6	mA	
los	Short-circuit ou	tput current§	$V_{CC} = MAX$,	V _O = 0,	T _A = 25°C	MM	-40	317	-120	mA	
Icc	Supply current receiver combine	`	V _{CC} = MAX,	T _A = 25°C	TW	WWW.	00Y.C	42	60	mA	

[†] All parameters with the exception of off-state open-collector output current are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25°C

driver section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high level output	See Figure 13	MANA	14	30	no
tPHL	Propagation delay time, high-to-low level output	See Figure 15	TVV	12	30	ns
tPZH	Output enable time to high level	$R_L = 180 \Omega$, See Figure 14	44.	8	20	ns
tPZL	Output enable time to low level	$R_L = 250 \Omega$, See Figure 15		17	40	ns
tPHZ	Output disable time from high level	$R_L = 180 \Omega$, See Figure 14		16	30	ns
tPLZ	Output disable time from low level	$R_L = 250 \Omega$, See Figure 15		20	35	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

SLLS073C - MAY 1976 - REVISED MARCH 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

receiver section

PARAMETER			WWW.I	TEST CONDITION	ONS†		116, SN7 SN75118		UNIT
	WW. 100Y.CO		WWW	001.CO	LTW W	MIN	TYP [‡]	MAX	V_{LM}
\/	MANN TOOK COM	TW	V _O = 0.4 V,	1007.CO	V _{CC} = MIN, V _{ICR} = 0, See Note 3	NWY	V.1003	0.5	M.T.
VIT+	Positive-going threshold vol	Positive-going threshold voltage§		$I_{OL} = 15 \text{ mA},$	V _{CC} = 5 V, V _{ICR} = MAX, See Note 4	MA	11.WN	00X.C	OM
\ <i>t</i>	WWW.1007.CO		V- 24V	MM.100X	V _{CC} = MIN, V _{ICR} = 0, See Note 3	-0.5¶	MMM	100 ^X	Y.CO
VIT-	Negative-going threshold vo	litages	$V_O = 2.4 \text{ V}, \qquad I_{OL} = -5 \text{ mA},$		V _{CC} = 5 V, V _{ICR} = MAX, See Note 4	-1¶		W.10	07.C
٧ı	Input voltage range#	V.CO	V _{CC} = 5 V,	$V_{ID} = -1 \text{ V or}$	1 V,	15 to 15	W	MM	100
\/a	High level output voltage	1007.C	Invie 5 mA	V _{CC} = MIN, V _{ICR} = 0,	$V_{ID} = -0.5 \text{ V},$ See Notes 3 and 5	2.4	4	NWN	N.100
VOH	High-level output voltage		$I_{OH} = -5 \text{ mA},$	V _{CC} = 5 V, V _{ICR} = MAX,	$V_{ID} = -1 V$, See Note 4	2.4			W.19
\ <u></u>	Low-level output voltage	N.100	I _{OL} = 15 mA,	V _{CC} = MIN, V _{ICR} = 0,	V _{ID} = 0.5 V, See Notes 3 and 6	N.TV	N	0.4	V
VOL	Low-level output voltage		IOL = 15 IIIA,	V _{CC} = 5 V, V _{ICR} = MAX,	V _{ID} = 1 V, See Note 4	T.MO	W	0.4	
	W.	-xi 1	DY. OM.	$V_I = 0$,	Other input at 0 V	Mo	-0.5	-0.9	11
I _{I(rec)}	Receiver input current		$V_{CC} = MAX$,	$V_{I} = 0.4 V,$	Other input at 2.4 V		-0.4	-0.7	mA
			COM	$V_{I} = 2.4 V,$	Other input at 0.4 V	Con	0.1	0.3	
lį	Input current at maximum input voltage	Strobe	$V_{CC} = MIN,$ $V_{strobe} = 4.5 V$	$V_{ID} = -0.5 V,$	SN55116, SN75116	Y.CO	M.T	5	μА
	ii pat voitago	Enable	$V_{CC} = MAX,$	V _I = 5.5 V	SN75118	N.C.	, K 1	1	mΑ

[†] Unless otherwise noted, V_{strobe} = 2.4 V. All parameters with the exception of off-state open-collector output current are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 3. This applies with the less positive receiver input grounded.

- 4. For SN55116, SN75116 and SN75118, this applies with the more positive receiver input at 15 V or the more negative receiver input at 15 V.
- 5. For SN55116, $V_{ID} = -1 \text{ V}$
- 6. For SN55116, $V_{ID} = 1 \text{ V}$

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, and $V_{IC} = 0$.

[§] Differential voltages are at the B input terminal with respect to the A input terminal.

¹ The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltages only

[#] Input voltage range is the voltage range that, if exceeded at either input, will cause the receiver to cease functioning properly.

SLLS073C - MAY 1976 - REVISED MARCH 1997

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

receiver section (continued)

N/	MAN. SOLC	JOH TY	MM	1001:00	W. W.	'116	6, SN751	18	TIM
	PARAMETER		WW WY	TEST CONDITIONS	TW	MIN	TYP [‡]	MAX	UNIT
lιΗ	High-level input current	Enable	V _{CC} = MAX,	V _I = 2.4 V	SN75118	WW	N.1	40	μА
lį	Low-level input	Strobe	V _{CC} = MAX, V _{strobe} = 0.4 V,	V _{ID} = 0.5 V, See Notes 3 and 6	SN55116, SN75116	WW	NW.1	-2.4	mA
-	Current	Enable	$V_{CC} = MAX$,	V _I = 0.4 V	SN75118	- 1	www.	-1.6	COM
I(RTC)	Response-time-co	ontrol	V _{CC} = MAX, RC at 0 V,	V _{ID} = 0.5 V, See Notes 3 and 6	T _A = 25°C	-1.2	NWV	100	mA
		100 1.	V _{CC} = MAX,	T _A = 25°C	COM		1	10	~1 CO
I _{O(off)}	Off-state open-coloutput current	llector	$V_0 = 12 V$	T. MAY 10	SN55116		A	200	μΑ
	output current	V.	$V_{ID} = -1 V$	$T_A = MAX$	SN75116, SN75118		MA	20	001.
	Off-state	W.100	V _{CC} = MAX,	T _A = 25°C	SN75118		W	±10	1001
loz	(high-impedance- output current	state)	$V_O = 0$ to V_{CC} , RE at 0.4 V	$T_A = MAX$	SN75118	N		±20	μΑ
RT	Line-terminating r	esistance	V _{CC} = 5 V	WWW	T _A = 25°C	77		167	Ω
los	Short-circuit outpu	ut current§	$V_{CC} = MAX,$ $V_{ID} = -0.5 V,$	V _O = 0, See Notes 3 and 5	T _A = 25°C	-15		-80	mA
ICC	Short current (driv		V _{CC} = MAX, See Notes 3 and 6	V _{ID} = 0.5 V,	T _A = 25°C	M.TW	42	60	mA

[†] Unless otherwise noted V_{strobe} = 2.4 V. All parameters with the exception of off-state open-collector output current are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 3. This applies with the less positive receiver input grounded.

- 5. For SN55116, $V_{ID} = -1 \text{ V}$
- 6. For SN55116, V_{ID} = 1 V

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25°C

receiver section

	PARAMETER		TEST (CONDITIONS	MIN	TYP	MAX	UNIT
· -·· · · · · · · · · · · · · · · · · ·		ropagation delay time, low-to-high-level output		1007.	20	75	ns	
^t PHL	Propagation delay time, high-to-low-level	output	$R_L = 400 \Omega$,	See Figure 16	1007	17	75	ns
^t PZH	Output enable time to high level	IN N. IO	$R_L = 480 \Omega$,	See Figure 14	11.5	9	20	ns
^t PZL	Output enable time to low level	SN75118	$R_L = 250 \Omega$,	See Figure 15	M.Inc	16	35	ns
^t PHZ	Output disable time from high level	311/5118	$R_L = 480 \Omega$,	See Figure 14	-TXV.10	12	30	ns
tPLZ	Output disable time from low level	M WW.	$R_L = 250 \Omega$,	See Figure 15	1	17	35	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, and $V_{IC} = 0$.

[§] Not more than one output should be shorted at a time.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TYPICAL CHARACTERISTICS

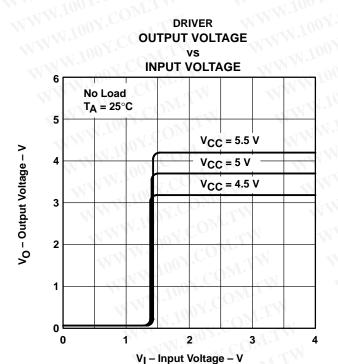
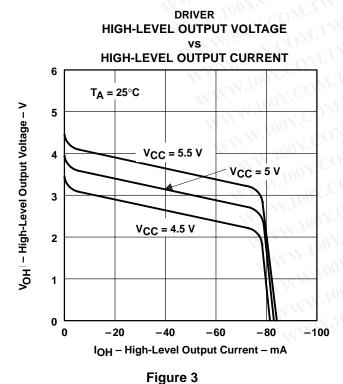



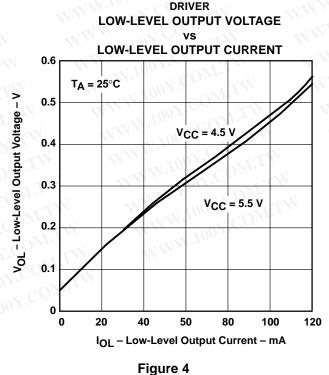
Figure 1

OUTPUT VOLTAGE†

VS
INPUT VOLTAGE

VCC = 5 V
No Load

TA = - 55°C


TA = 25°C

TA = 125°C

† Data for temperatures below 0°C and above 70°C are only applicable to SN55116.

V_I - Input Voltage - V

Figure 2

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

TYPICAL CHARACTERISTICS

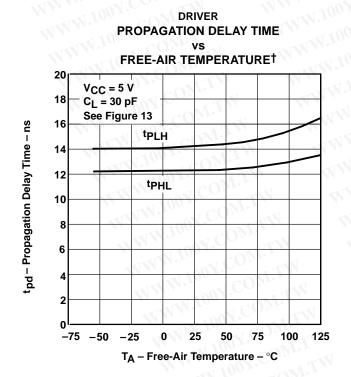
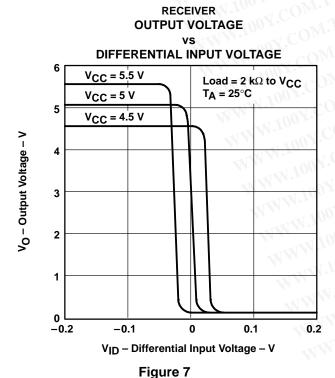
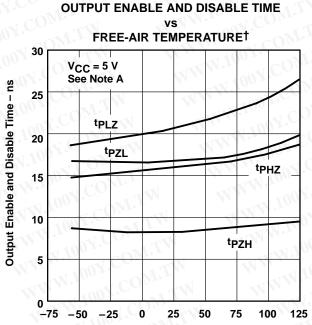




Figure 5

† Data for temperatures below 0°C and above 70°C are only applicable to SN55116.

DRIVER

T_A – Free-Air Temperature – °C

NOTE A: Fortp_{ZH} andtp_{HZ}: R_L = 480 Ω , see Figure 14. Fortp_{ZL}

and tp_{LZ}: R_L = 250 Ω , see Figure 15.

Figure 6

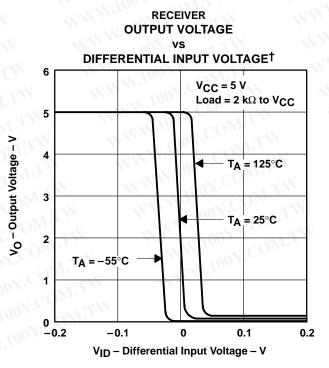


Figure 8

TYPICAL CHARACTERISTICS

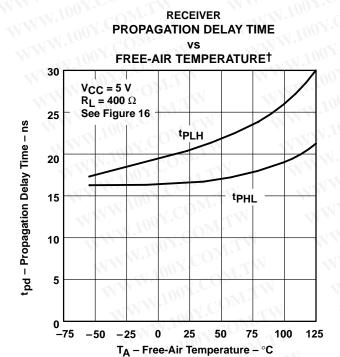
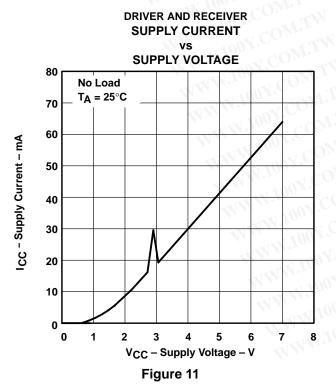
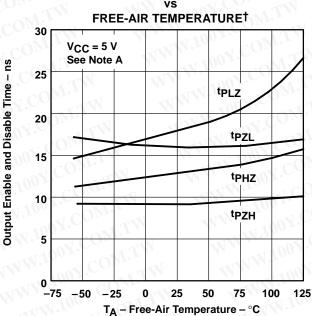
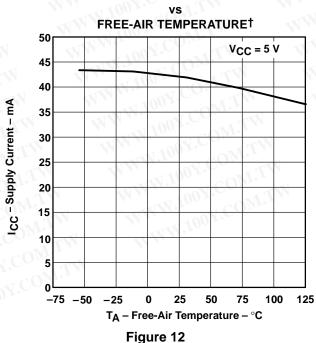




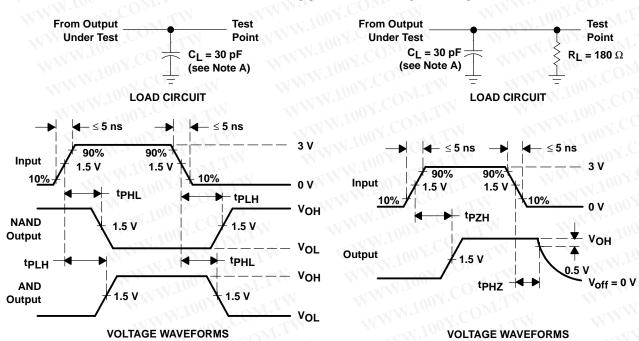
Figure 9


RECEIVER
OUTPUT ENABLE AND DISABLE TIME
VS

NOTE A: For tpzH and tpHz :RL= $480~\Omega$, see Figure 14. For tpzL and tpLz: RL = $250~\Omega$, see Figure 15.

Figure 10

DRIVER AND RECEIVER SUPPLY CURRENT



[†] Data for temperatures below 0°C and above 70°C are only applicable to SN55116.

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

PARAMETER MEASUREMENT INFORMATION

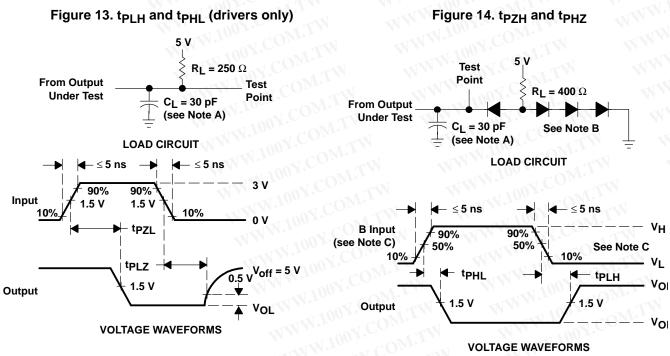


Figure 15. tpzL and tpLZ (SN75118 receiver only)

Figure 16. tplH and tpHL (receivers only)

NOTES: A: C_I includes probe and jig capacitance.

- B. All diodes are 1N3064 or equivalent.
- For SN55116, SN75116, and SN75118, $V_H = 3 \text{ V}$, $V_I = -3 \text{ V}$, the A input is at 0 V.
- When testing the SN55116, SN75116, and SN75118 receiver sections, the response-time control and the termination resistor pins are left open.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated