SONY. CXK58257AP/ASP/AM -70L/10L/12L *

32768-word × 8-bit High Speed CMOS Static RAM

Description

CXK58257AP/ASP/AM is 262,144 bits high speed CMOS static RAM organized as 32,768 words by 8 bits and operates from a single 5V supply. This device is suitable for use in high speed and low power applications in which battery back up for nonvolatility is required.

* 300mil DIP covers only L-version.

Features

- Fast access time: (Access time)
 CXK58257AP/ASP/AM-70L, 70LL 70ns(Max.)
 CXK58257AP/ASP/AM-10L, 10LL 100ns(Max.)
 CXK58257AP/ASP/AM-12L, 12LL 120ns(Max.)
- Low power operation:

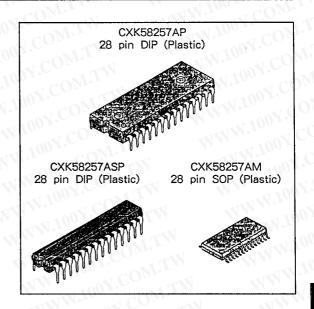
CXK58257AP/AM-70LL, 10LL, 12LL;

Standby : 1 μ W (Typ.) Operation : 15mW (Typ.)

CXK58257AP/ASP/AM-70L, 10L, 12L;

Standby : 2.5 μW (Typ.) Operation : 15mW (Typ.)

- Single + 5V supply: + 5V ± 10%
- Fully static memory...No clock or timing


strobe required

- Equal access and cycle time
- Common data input and output:

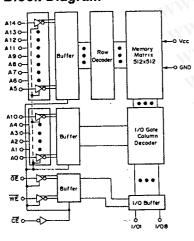
three state output

Directly TTL compatible:

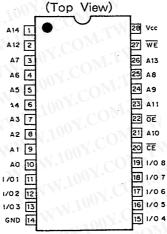
All inputs and outputs

- Low voltage data retention: 2.0V (Min.)
- Available in 28 pin 600mil DIP, 300mil DIP and 450mil SOP

Function


32768-word × 8-bit static RAM

Structure


Silicon gate CMOS IC

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Block Diagram

Pin Configuration (Top View)

Pin Description

Symbol	Description
A0 to A14	Address input
1/01 to 1/08	Data input/output
CE	Chip enable input
WE N	Write enable input
ŌĒ	Output enable input
Vcc	+5V power supply
GND	Ground

E90447B46 - ST

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736

胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

CXK58257AP/ASP/AN

WWW.100Y.COM

WWW.100Y

WWW.100Y.COM.TW

Supply voltage	Vcc	TOON CONTRACT	- 0.5 to + 7.0	00 V
Input voltage	Vin		-0.5* to V∞+0.5	V ₁ .C
Input and output voltage		M.Joo. COM.	-0.5 * to V∞ + 0.5	V
Allowable newer dissinction	PD CXK58257AP/ASP		1.0	W
Allowable power dissipation		CXK58257AM	0.7	Woo
Operating temperature	Тор	r\\ 1007.Co	0 to +70	ి చి
Storage temperature	Tstg	MM. OON.CO	- 55 to + 150	ဗ
Soldering temperature	Tso	lder	260 • 10	℃ · sec
VIN, $V_{1/0} = -3.0V$ Min. for ruth Table	pulse	width less than 5	50ns.	WWW.
CE OE WE Mo	de	I/01 to I/0	8 Vcc Current	
CE OE WE Mo H X X Not se				

^{*} VIN, $V_{1/0} = -3.0$ V Min. for pulse width less than 50ns.

SONY

WWW.100Y.COM.TW WWW.100V.COM.TW

WWW.100Y.COM

ruth	Table				
CE	ŌĒ	WE	Mode	I/01 to I/08	Vcc Current
Н	×	×	Not selected	High Z	ISB1, ISB2
L	Н	Н	Output disable	High Z	lcc1, lcc2
L	L	H0	Read	Data out	lcc1, lcc2
L	×	L	Write	Data in	lcc1, lcc2

×: "H" or "L"

DC Recommended Operating Conditions $(Ta = 0 to + 70 \degree C, GND = 0V)$

	Symbol	Min.	Тур.	Max.	Unit
oply voltage	Vcc	4.5	5.0	5.5	٧
ut high voltage	Vih	2.2	-W	V∞+0.3	٧
ut low voltage	VIL	0.3*		0.8	CV
	VIL	- 0.3*			,C1

^{*} $V_{IL} = -3.0V$ Min. for pulse width less than 50ns. WWW.100Y.COM.

SONY

WWW.100Y.COM.TW

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

CXK58257AP/ASP/AM

Electrical Characteristics

DC and operating characteristics

 $(Vcc = 5V \pm 10\%, GND = 0V, Ta = 0 to + 70\%)$

WW.100Y.COM.TW

100	1.	-11	700	7/	01 /101	(10)	701	1 /1011	/1011	
Item	Symbol	Test condi	tions	- 10				- 70LL/10LL/12LL		
WW. To	17.		N. T.	Min.	Тур.*	Max.	Min.	Тур.*	Max.	OB
Input leakage current	du A	$V_{IN} = GND$ to V_{II}	x N.100 x	- 0.5	-	0.5	- 0.5	AN'I	0.5	μА
Output leakage current	ILO	$\overline{CE} = V_{1H} \text{ or } \overline{OE} = V_{1/O} = GND \text{ to } V_{1/O} = V$		- 0.5	W.I.	0.5	- 0.5	M.	0.5	μА
Operating	CE = V _{IL} , V _{IN} = V _{IH} or V _{IL} , I _{OUT} = OmA			3	10		3	10	X. C	
power supply current	loc1	<u>CE</u> ≦ 0.2V V _{IN} ≦ 0.2V or ≧ \	√∞ – 0.2V	1001.	CG_{M}	5		— 1 5	5	mA
Average	ge Cycle = Min,	Cycle = Min	70L/70LL		30	50	[— ·	30	50	100 X
perating lcc2	Duty = 100% ,	10L/10LL	700	23	50	N -	23	50	mA	
urrent	700 x.	lout = 0mA	12L/12LL	(110)	20	50	-31	20	50	1.700
	u 1007	<u>CE</u> ≥ V _∞ – 0.2V	0 to 70℃	- 	MY:	25			5	(N.10)
Standby	I _{SB1}		0 to 40℃	V 1	007.	5	TW		1	μΑ
current	11.7		25℃ √	// A.	0.5	2	-44	0.2	0.5	
	ISB2	CE = ViH	1	V TAN	0.4	2		0.4	2	mA
Output high voltage	Vон	I _{OH} = - 1.0mA	N	2.4	V.10	V IC C	2.4	4		V
Output low voltage	VoL	I _{OL} = 2.1mA	LM	<u>M</u> M	NW.	0.4	-OM		0.4	V
Voc = 5V, Ta =	25℃	I _{OL} = 2.1 mA	IN IN	- 25°	C, f =	1007	CON	M.TV	0.4	V
Item		nhol Test cond			lav					

^{*} Vcc = 5V, Ta = 25 ℃

I/O capacitance

Item	Symbol	Test conditions	Min.	Max.	Unit
Input capacitance	Cin	V _{IN} = 0V	XX	6	pF
I/O capacitance	Cı/o	V ₁ ∕0 = 0V	<u> </u>	8	рF

WWW.100Y.COM.TV

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.IOUY.COM.TW WWW.100Y.COM:T X TOOX.COM. SONY CXK58257AP/ASP/AM WWW.100X

WWW.100X. **AC** characteristics AC test conditions

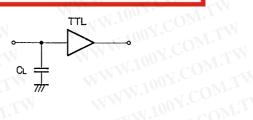
WWW.100Y.COM.TW

WWW.100Y.COM. $(Vcc = 5V \pm 10\%, Ta = 0 \text{ to } +70\%)$

WW.100Y.COM.TW

MMM.100

Y.COM.TW


	Item	Conditions
Input pulse	high level	V _{IH} = 2.2V
Input pulse	low level	V _{IL} = 0.8V
Input rise ti	me	tr = 5ns
Input fall tir	ne	tf = 5ns
Input and o reference lev		1.5V
Output load	10L/10LL/12L/ 12LL	C _L *= 100pF, 1TTL
conditions	70L/70LL	C _L *= 30pF, 1TTL

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

OX.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW

WW.100Y.COM.TW .COM.TW * C_L includes scope and jig capacitances. WWW.100Y.COM.TW WWW.100Y.COM.TW MMM.1007.1

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

CXK58257AP/ASP/AM

Read cycle

Item	Comphal	- 70L	./70LL	-10L	/10LL	-12L	/12LL	OM:
WW. CONTENT	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read cycle time	trc	70	-1 1	100		120	1001	ns
Address access time	taa	, c 0	70	N -	100	TAN	120	ns
Chip enable access time	tco	×7 (')	70		100	at Ni	120	ns
Output enable to output valid	toE	17.	35	<u> </u>	50	VV	60	ns
Output hold from address change	tон	20		20		20	-3V-3	ns
Chip enable to output in low Z (CE)	tLz	10	<u>, W</u>	10		10	V -	ns
Output enable to output in low Z (OE)	toLz	5	(CD)	5	V-	5	M.	ns
Chip disable to output in high Z (CE)	tHZ*	0	30	0	30	0	30	ns
Chip disable to output in high Z (OE)	tonz*	0	30	0	30	0	30	ns

WWW.100Y.COM.TW

• Write cycle

Item	Symbol	-70L	./70LL	-10L	/10LL	-12L	./12LL	
Whitelii 1007.	Syllibol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write cycle time	twc	70	1	100		120		ns
Address valid to end of write	taw	65	dan.	80	CO	100		ns
Chip enable to end of write	tcw	65		80	(.C)	100	V-	ns
Data to write time overlap	tow	30	-111	35	√CC	40	CN	ns
Data hold from write time	toH	0	77	(O)	0 2 (1	0	-31	ns
Write pulse width	twp	50	777	60	002.	70	177	ns
Address setup time	tas	0	4	0	002	0	(AM	ns
Write recovery time (WE)	twn	N O		0	1000 Y	0	4	ns
Write recovery time (CE)	twn	0		0	-3-00	0	777	N ns
Output active from end of write	tow	10		10	VII	10)VIII	ns
Write to output in high Z	twnz*	0	25	0	25	0	25	ns

^{*} twHz is defined as the time required for outputs to turn to high impedance state and is not WWW.100Y.C WWW.100Y.COM.TW WWW.100Y.COM.T referred to as output voltage level.

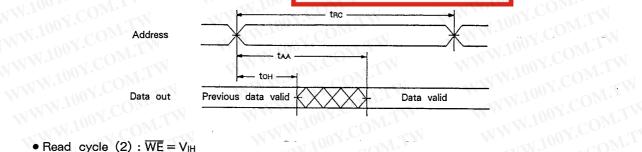
W.100Y.COM.T NW.100Y.COM

WWW.TOOY.COM.TW WWW.100Y.COM.TW * the and tone are defined as the time required for outputs to turn to high impedance state WWW.100Y WWW.100Y.COM.T and are not referred to as output voltage levels.

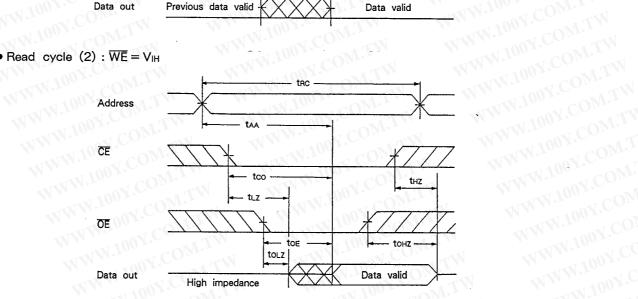
WWW.100Y.COM.TV SONY

WWW.100Y.COM.TW

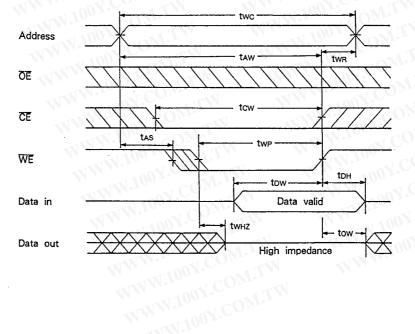
CXK58257AP/ASP/AM 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 .com.TW 胜特力电子(深圳) 86-755-83298787 100Y.COM.TW

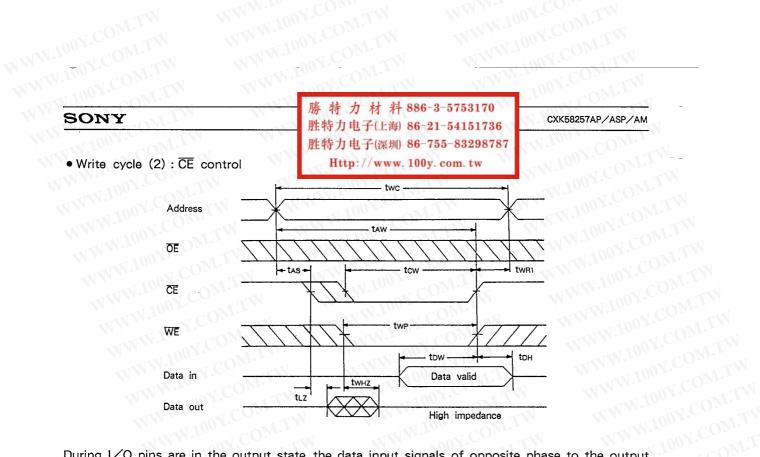

W.100Y.COM.TW

.100Y.COM.TW


Http://www. 100y. com. tw

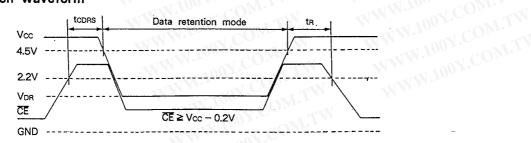
WWW.100 **Timing Waveform**


Read cycle (1) : CE = OE = V_{IL}, WE = V_{IH}



Read cycle (2) : WE = V_{IH}

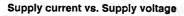
• Write cycle (1): WE control

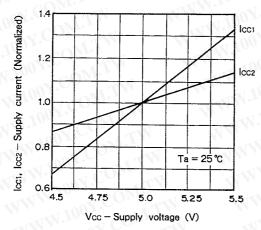

During I/O pins are in the output state, the data input signals of opposite phase to the output must not be applied.

Data Retention Characteristics

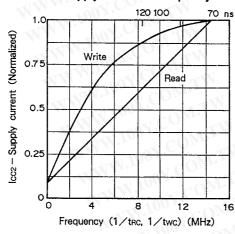
Item Symbo		Test conditions		-70L/10L/12L			-70	Unit											
110111	710111		rest conditions		Тур.	Max.	Min.	Тур.	Max.	OHIL									
Data retention voltage	VDR	CE ≧ Vcc - 0.2V		<u>CE</u> ≧ Vcc − 0.2V		CE ≧ Vcc - 0.2V		CE ≧ Vcc − 0.2V	<u>CE</u> ≥ Vcc - 0.2V		DR		2.0		5.5	2.0	MAT Y	5.5	V
Data retention current		Vcc = 3.0V CE ≥ 2.8V	Ta = 0 to 70°C		71	10	U <u>F</u>		3										
	ICCDR1		Ta = 0 to 40°C		30.7	2	0000		0.6	μΑ									
			25℃		0.25	1	1007	0.1	0.3										
	ICCDR2	$\frac{\text{Vcc} = 2.0 \text{ to}}{\text{CE}} \ge \text{Vcc} - 0$	N_	0.5	25	, 100 7	0.2	5	μА										
Data retention setup time	tcdrs	Chip disable retention m		0			000	N.C.		ns									
Recovery time	tR	TANY	Ting TCOM	trc*	—	-31	trc*		ON.	ns									

^{*} tRC: Read cycle time

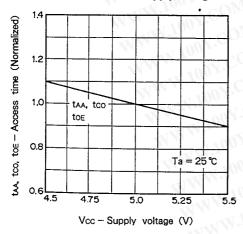

Data retention waveform

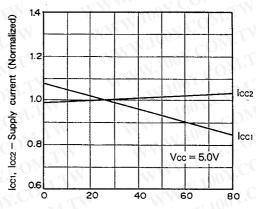


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

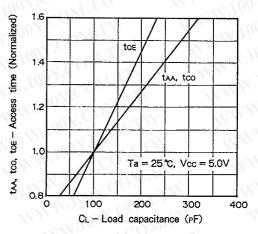

CXK58257AP/ASP/AN

Example of Representative Characteristics

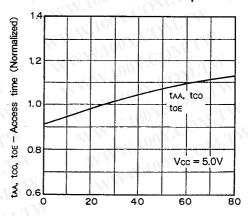



Supply current vs. Frequency

Access time vs. Supply voltage



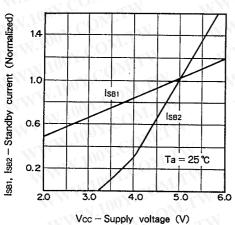
Supply current vs. Ambient temperature



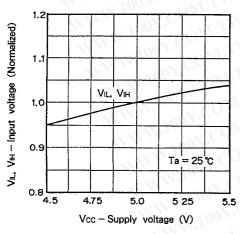
Ta - Ambient temperature (℃)

Access time vs. Load capacitance

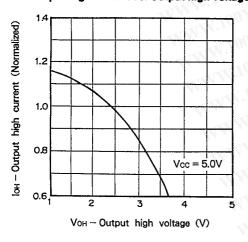
Access time vs. Ambient temperature

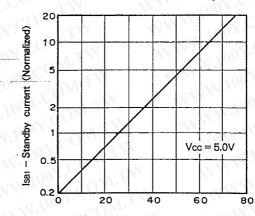

Ta - Ambient temperature (℃)

SONY

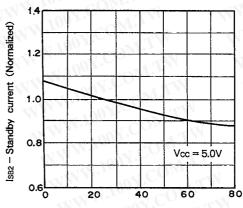

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

CXK58257AP/ASP/AM

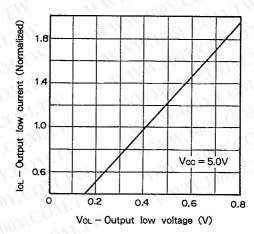

Standby current vs. Supply voltage

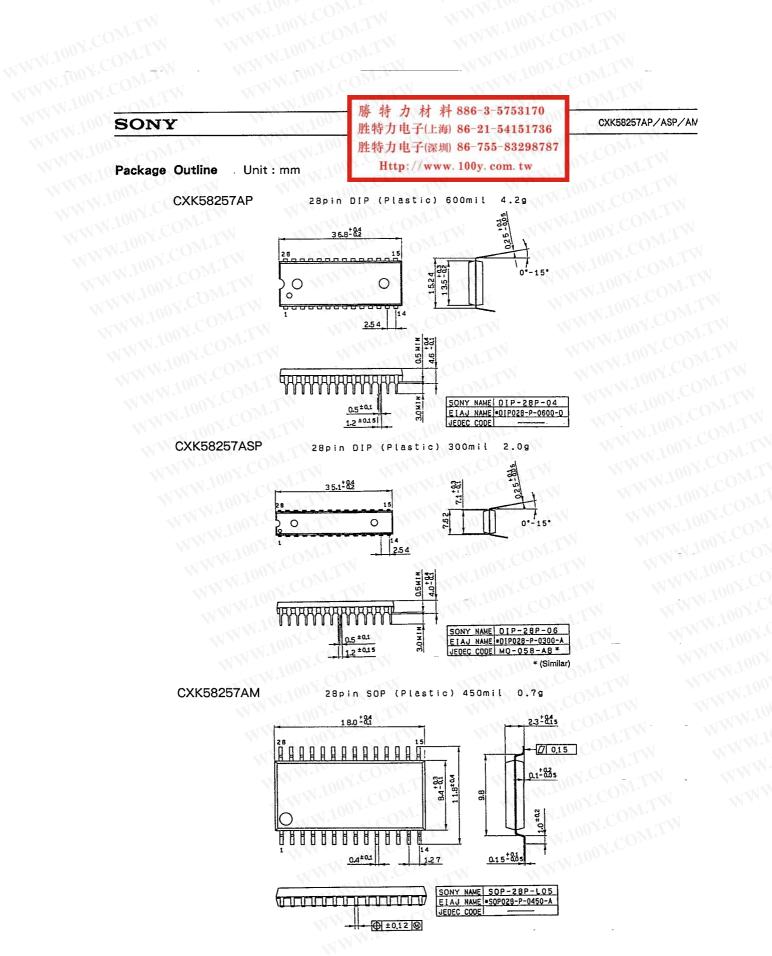

Input voltage level vs. Supply voltage

Output high current vs. Output high voitage



Standby current vs. Ambient temperature


Ta - Ambient temperature (℃)


Standby current vs. Ambient temperature

Ta - Ambient temperature (℃)

Output low current vs. Output low voltage

