2 Mbit / 4 Mbit / 8 Mbit (x16) Multi-Purpose Flash

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

勝 特 力 材 料 886-3-5753170

胜特力电子(上海) 86-21-54151736

胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

FEATURES:

- Organized as 128K x16 / 256K x16 / 512K x16
- Single Voltage Read and Write Operations
 - 3.0-3.6V for SST39LF200A/400A/800A
 - 2.7-3.6V for SST39VF200A/400A/800A
- Superior Reliability
 - Endurance: 100,000 Cycles (typical)
 - Greater than 100 years Data Retention
- Low Power Consumption (typical values at 14 MHz)
 - Active Current: 9 mA (typical)Standby Current: 3 μA (typical)
- Sector-Erase Capability
 - Uniform 2 KWord sectors
- Block-Erase Capability
 - Uniform 32 KWord blocks
- Fast Read Access Time
 - 45 and 55 ns for SST39LF200A/400A
 - 55 ns for SST39LF800A
 - 70 and 90 ns for SST39VF200A/400A/800A
- Latched Address and Data

Fast Erase and Word-Program

- Sector-Erase Time: 18 ms (typical)
 Block-Erase Time: 18 ms (typical)
 Chip-Erase Time: 70 ms (typical)
- Word-Program Time: 14 µs (typical)
- Chip Rewrite Time:
 - 2 seconds (typical) for SST39LF/VF200A 4 seconds (typical) for SST39LF/VF400A 8 seconds (typical) for SST39LF/VF800A
- Automatic Write Timing
 - Internal V_{PP} Generation
- End-of-Write Detection
 - Toggle Bit
 - Data# Polling
- CMOS I/O Compatibility
- JEDEC Standard
 - Flash EEPROM Pinouts and command sets
- Packages Available
 - 48-lead TSOP (12mm x 20mm)
 - 48-ball TFBGA (6mm x 8mm)
 - 48-ball WFBGA (4mm x 6mm) for 4M and 8M
 - 48-bump XFLGA (4mm x 6mm) for 4M and 8M

PRODUCT DESCRIPTION

The SST39LF200A/400A/800A and SST39VF200A/400A/800A devices are 128K x16 / 256K x16 / 512K x16 CMOS Multi-Purpose Flash (MPF) manufactured with SST's proprietary, high performance CMOS SuperFlash technology. The split-gate cell design and thick oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39LF200A/400A/800A write (Program or Erase) with a 3.0-3.6V power supply. The SST39VF200A/400A/800A write (Program or Erase) with a 2.7-3.6V power supply. These devices conform to JEDEC standard pinouts for x16 memories.

Featuring high performance Word-Program, the SST39LF200A/400A/800A and SST39VF200A/400A/800A devices provide a typical Word-Program time of 14 µsec. The devices use Toggle Bit or Data# Polling to detect the completion of the Program or Erase operation. To protect against inadvertent write, they have on-chip hardware and software data protection schemes. Designed, manufactured, and tested for a wide spectrum of applications, these devices are offered with a guaranteed typical endurance of 100,000 cycles. Data retention is rated at greater than 100 years.

The SST39LF200A/400A/800A and SST39VF200A/400A/ 800A devices are suited for applications that require convenient and economical updating of program, configuration, or data memory. For all system applications, they significantly improve performance and reliability, while lowering power consumption. They inherently use less energy during Erase and Program than alternative flash technologies. When programming a flash device, the total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any Erase or Program operation is less than alternative flash technologies. These devices also improve flexibility while lowering the cost for program, data, and configuration storage applications.

The SuperFlash technology provides fixed Erase and Program times, independent of the number of Erase/Program cycles that have occurred. Therefore the system software or hardware does not have to be modified or de-rated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles.

Data Sheet

To meet surface mount requirements, the SST39LF200A/400A/800A and SST39VF200A/400A/800A are offered in 48-lead TSOP packages and 48-ball TFBGA packages as well as Micro-Packages. See Figures 1, 2, and 3 for pin assignments.

Device Operation

Commands are used to initiate the memory operation functions of the device. Commands are written to the device using standard microprocessor write sequences. A command is written by asserting WE# low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first.

Read

The Read operation of the SST39LF200A/400A/800A and SST39VF200A/400A/800A is controlled by CE# and OE#, both have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure 4).

Word-Program Operation

The SST39LF200A/400A/800A and SST39VF200A/400A/ 800A are programmed on a word-by-word basis. Before programming, the sector where the word exists must be fully erased. The Program operation is accomplished in three steps. The first step is the three-byte load sequence for Software Data Protection. The second step is to load word address and word data. During the Word-Program operation, the addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of either CE# or WE#, whichever occurs first. The third step is the internal Program operation which is initiated after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation, once initiated, will be completed within 20 µs. See Figures 5 and 6 for WE# and CE# controlled Program operation timing diagrams and Figure 17 for flowcharts. During the Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program operation, the host is free to perform additional tasks. Any commands issued during the internal Program operation are ignored.

Sector/Block-Erase Operation

The Sector- (or Block-) Erase operation allows the system to erase the device on a sector-by-sector (or block-bybasis. The SST39LF200A/400A/800A and SST39VF200A/400A/800A offers both Sector-Erase and Block-Erase mode. The sector architecture is based on uniform sector size of 2 KWord. The Block-Erase mode is based on uniform block size of 32 KWord. The Sector-Erase operation is initiated by executing a six-byte command sequence with Sector-Erase command (30H) and sector address (SA) in the last bus cycle. The Block-Erase operation is initiated by executing a six-byte command sequence with Block-Erase command (50H) and block address (BA) in the last bus cycle. The sector or block address is latched on the falling edge of the sixth WE# pulse, while the command (30H or 50H) is latched on the rising edge of the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse. The End-of-Erase operation can be determined using either Data# Polling or Toggle Bit methods. See Figures 10 and 11 for timing waveforms. Any commands issued during the Sector- or Block-Erase operation are ignored.

Chip-Erase Operation

The SST39LF200A/400A/800A and SST39VF200A/400A/800A provide a Chip-Erase operation, which allows the user to erase the entire memory array to the "1" state. This is useful when the entire device must be quickly erased.

The Chip-Erase operation is initiated by executing a sixbyte command sequence with Chip-Erase command (10H) at address 5555H in the last byte sequence. The Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the Erase operation, the only valid read is Toggle Bit or Data# Polling. See Table 4 for the command sequence, Figure 9 for timing diagram, and Figure 20 for the flowchart. Any commands issued during the Chip-Erase operation are ignored.

Write Operation Status Detection

The SST39LF200A/400A/800A and SST39VF200A/400A/800A provide two software means to detect the completion of a write (Program or Erase) cycle, in order to optimize the system write cycle time. The software detection includes two status bits: Data# Polling (DQ₇) and Toggle Bit (DQ₆). The End-of-Write detection mode is enabled after the rising edge of WE#, which initiates the internal Program or Erase operation.

Data Sheet

The actual completion of the nonvolatile write is asynchronous with the system; therefore, either a Data# Polling or Toggle Bit read may be simultaneous with the completion of the write cycle. If this occurs, the system may possibly get an erroneous result, i.e., valid data may appear to conflict with either DQ₇ or DQ₆. In order to prevent spurious rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both reads are valid, then the device has completed the write cycle, otherwise the rejection is valid.

Data# Polling (DQ7)

When the SST39LF200A/400A/800A and SST39VF200A/ 400A/800A are in the internal Program operation, any attempt to read DQ7 will produce the complement of the true data. Once the Program operation is completed, DQ7 will produce true data. Note that even though DQ7 may have valid data immediately following the completion of an internal Write operation, the remaining data outputs may still be invalid: valid data on the entire data bus will appear in subsequent successive Read cycles after an interval of 1 µs. During internal Erase operation, any attempt to read DQ₇ will produce a '0'. Once the internal Erase operation is completed, DQ7 will produce a '1'. The Data# Polling is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block- or Chip-Erase, the Data# Polling is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 7 for Data# Polling timing diagram and Figure 18 for a flowchart.

Toggle Bit (DQ₆)

During the internal Program or Erase operation, any consecutive attempts to read DQ_6 will produce alternating 1s and 0s, i.e., toggling between 1 and 0. When the internal Program or Erase operation is completed, the DQ_6 bit will stop toggling. The device is then ready for the next operation. The Toggle Bit is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block- or Chip-Erase, the Toggle Bit is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 8 for Toggle Bit timing diagram and Figure 18 for a flowchart.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Data Protection

The SST39LF200A/400A/800A and SST39VF200A/400A/800A provide both hardware and software features to protect nonvolatile data from inadvertent writes.

Hardware Data Protection

Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a write cycle.

 V_{DD} Power Up/Down Detection: The Write operation is inhibited when V_{DD} is less than 1.5V.

<u>Write Inhibit Mode</u>: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.

Software Data Protection (SDP)

The SST39LF200A/400A/800A and SST39VF200A/400A/800A provide the JEDEC approved Software Data Protection scheme for all data alteration operations, i.e., Program and Erase. Any Program operation requires the inclusion of the three-byte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. Any Erase operation requires the inclusion of six-byte sequence. This group of devices are shipped with the Software Data Protection permanently enabled. See Table 4 for the specific software command codes. During SDP command sequence, invalid commands will abort the device to Read mode within TRC. The contents of DQ₁₅-DQ₈ can be V_{IL} or V_{IH}, but no other value, during any SDP command sequence.

Common Flash Memory Interface (CFI)

The SST39LF200A/400A/800A and SST39VF200A/400A/800A also contain the CFI information to describe the characteristics of the device. In order to enter the CFI Query mode, the system must write three-byte sequence, same as Software ID Entry command with 98H (CFI Query command) to address 5555H in the last byte sequence. Once the device enters the CFI Query mode, the system can read CFI data at the addresses given in Tables 5 through 9. The system must write the CFI Exit command to return to Read mode from the CFI Query mode.

Product Identification

The Product Identification mode identifies the devices as the SST39LF/VF200A, SST39LF/VF400A and SST39LF/VF800A and manufacturer as SST. This mode may be accessed by software operations. Users may use the Software Product Identification operation to identify the part (i.e., using the device ID) when using multiple manufacturers in the same socket. For details, see Table 4 for software operation, Figure 12 for the Software ID Entry and Read timing diagram, and Figure 19 for the Software ID Entry command sequence flowchart.

TABLE 1: PRODUCT IDENTIFICATION

WWW.	Address	Data
Manufacturer's ID	0000H	00BFH
Device ID	Ido.	
SST39LF/VF200A	0001H	2789H
SST39LF/VF400A	0001H	2780H
SST39LF/VF800A	0001H	2781H

T1.3 1117

Product Identification Mode Exit/ CFI Mode Exit

In order to return to the standard Read mode, the Software Product Identification mode must be exited. Exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to the Read mode. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that apparently causes the device to behave abnormally, e.g., not read correctly. Please note that the Software ID Exit/ CFI Exit command is ignored during an internal Program or Erase operation. See Table 4 for software command codes, Figure 14 for timing waveform, and Figure 19 for a flowchart.

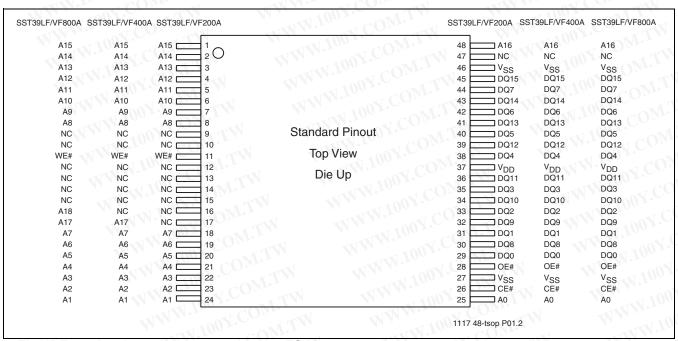


FIGURE 1: PIN ASSIGNMENTS FOR 48-LEAD TSOP

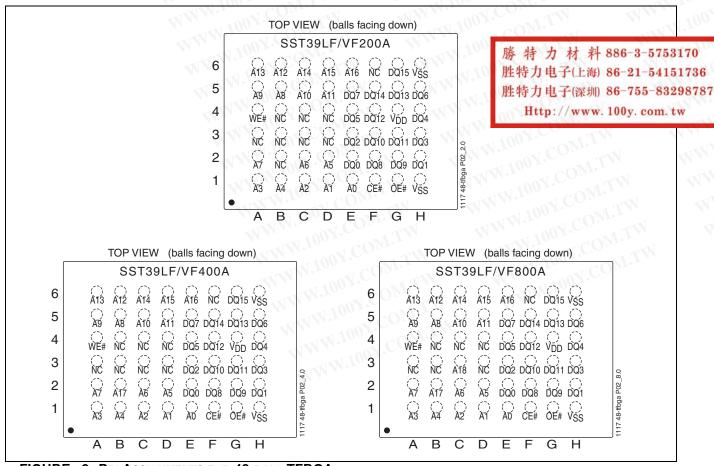


FIGURE 2: PIN ASSIGNMENTS FOR 48-BALL TFBGA

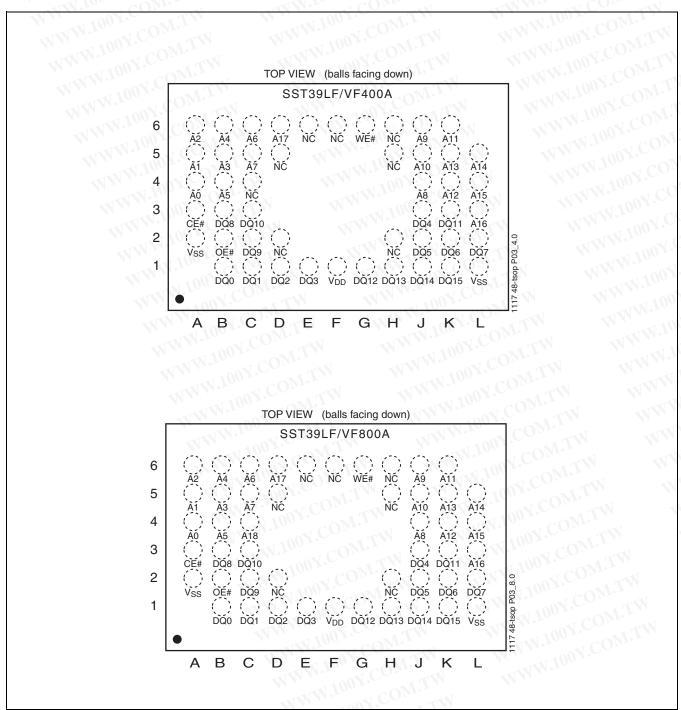


FIGURE 3: PIN ASSIGNMENTS FOR 48-BALL WFBGA AND 48-BUMP XFLGA

TABLE 2: PIN DESCRIPTION

Symbol	Pin Name	Functions			
A _{MS} ¹ -A ₀	Address Inputs	To provide memory addresses. During Sector-Erase A_{MS} - A_{11} address lines will select the sector. During Block-Erase A_{MS} - A_{15} address lines will select the block.			
DQ ₁₅ -DQ ₀	Data Input/output	To output data during Read cycles and receive input data during Write cycles. Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high.			
CE#	Chip Enable	To activate the device when CE# is low.			
OE#	Output Enable	To gate the data output buffers.			
WE#	Write Enable	To control the Write operations.			
V_{DD}	Power Supply	To provide power supply voltage:	3.0-3.6V for SST39LF200A/400A/800A 2.7-3.6V for SST39VF200A/400A/800A		
V_{SS}	Ground	COMITY			
NC	No Connection	Unconnected pins.			

TABLE 3: OPERATION MODES SELECTION

Mode	- N	CE#	OE#	WE#	DQ	Address
Read	11 4	VIL	V _{IL}	V _{IH}	D _{OUT}	A _{IN}
Program	WW	V_{IL}	V _{IH}	V_{IL}	D _{IN}	A _{IN}
Erase	W	V _{IL}	VIH	V _{IL}	X1	Sector or Block address, XXH for Chip-Erase
Standby	V	V_{IH}	O X	X	High Z	X
Write Inhibit	-	X	VIL	X	High Z/ D _{OUT}	X
		X	X	V _{IH}	High Z/ D _{OUT}	X X CONTRACTOR
Product Identification			N.100	COM.	A STATE OF THE STA	M.M. TOO CONT.
Software Mode		V_{IL}	VIL	V _{IH}	1.7.	See Table 4

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.

A_{MS} = Most significant address

Data Sheet

TABLE 4: SOFTWARE COMMAND SEQUENCE

Command Sequence	1st Bus Write Cycle		2nd Bus Write Cycle		3rd Bus Write Cycle		4th Bus Write Cycle		5th Bus Write Cycle		6th Bus Write Cycle	
	Addr ¹	Data ²	Addr ¹	Data ²								
Word-Program	5555H	AAH	2AAAH	55H	5555H	A0H	WA ³	Data	WV	M.r	N.CC	Mr.
Sector-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	SA _X ⁴	30H
Block-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	BA _X ⁴	50H
Chip-Erase	5555H	AAH	2AAAH	55H <	5555H	80H	5555H	AAH	2AAAH	55H	5555H	10H
Software ID Entry ^{5,6}	5555H	AAH	2AAAH	55H	5555H	90H	COL	TW		NNN	4007	Co
CFI Query Entry ⁵	5555H	AAH	2AAAH	55H	5555H	98H	ST CO	1		TATAN	1.10	J.CO
Software ID Exit ⁷ / CFI Exit	XXH	F0H	MIN	Į.	WV	W.10	OY.CC	M.I.	N	WW	W.100	OY.CO
Software ID Exit ⁷ / CFI Exit	5555H	AAH	2AAAH	55H	5555H	F0H	00Y.C	OM.	W	W	MAN.	00Y.C

T4.3 1117

- Address format A₁₄-A₀ (Hex), Addresses A_{MS}-A₁₅ can be V_{IL} or V_{IH}, but no other value, for the Command sequence. A_{MS} = Most significant address
 - $A_{MS} = A_{16}$ for SST39LF/VF200A, A_{17} for SST39LF/VF400A, and A_{18} for SST39LF/VF800A
- 2. DQ_{15} - DQ_{8} can be V_{IL} or V_{IH} , but no other value, for the Command sequence
- 3. WA = Program word address
- 4. SA_X for Sector-Erase; uses A_{MS} - A_{11} address lines BA_X for Block-Erase; uses A_{MS} - A_{15} address lines
- 5. The device does not remain in Software Product ID mode if powered down.
- 6. With A_{MS} - A_1 = 0; SST Manufacturer's ID = 00BFH, is read with A_0 = 0,
 - SST39LF/VF200A Device ID = 2789H, is read with $A_0 = 1$.
 - SST39LF/VF400A Device ID = 2780H, is read with $A_0 = 1$.
 - SST39LF/VF800A Device ID = 2781H, is read with $A_0 = 1$.
- 7. Both Software ID Exit operations are equivalent

TABLE 5: CFI QUERY IDENTIFICATION STRING1 FOR SST39LF200A/400A/800A AND SST39VF200A/400A/800A

Address	Data	Data
10H	0051H	Query Unique ASCII string "QRY"
11H	0052H	WWW. 100X.CO. TW WW. 100X.CO.TW
12H	0059H	TWW.It. ON. COM.
13H	0001H	Primary OEM command set
14H	0007H	MAN TOOK OF THE WAY TOOK ON THE
15H	H0000	Address for Primary Extended Table
16H	H0000	W. TW TON TOWN TOWN TOWN TOWN TOWN TOWN TO
17H	H0000	Alternate OEM command set (00H = none exists)
18H	H0000	MAN. T. COM. TAN MAN. TON. CO. TAN
19H	0000H	Address for Alternate OEM extended Table (00H = none exits)
1AH	0000H	MM, 1001. 201. IM MM, 21.1001.

1. Refer to CFI publication 100 for more details.

T5.0 1117

TABLE 6: SYSTEM INTERFACE INFORMATION FOR SST39LF200A/400A/800A AND SST39VF200A/400A/800A

Address	Data	Data Data
1BH	0027H ¹	V _{DD} Min (Program/Erase)
WV	0030H ¹	DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts
1CH	0036H	V _{DD} Max (Program/Erase) DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts
1DH 🔨	0000H	V_{PP} min (00H = no V_{PP} pin)
1EH	0000H	V_{PP} max (00H = no V_{PP} pin)
1FH	0004H	Typical time out for Word-Program 2^N µs (2^4 = 16 µs)
20H	0000H	Typical time out for min size buffer program 2 ^N µs (00H = not supported)
21H	0004H	Typical time out for individual Sector/Block-Erase 2 ^N ms (2 ⁴ = 16 ms)
22H	0006H	Typical time out for Chip-Erase 2 ^N ms (2 ⁶ = 64 ms)
23H	0001H	Maximum time out for Word-Program 2^N times typical ($2^1 \times 2^4 = 32 \mu s$)
24H	0000H	Maximum time out for buffer program 2 ^N times typical
25H	0001H	Maximum time out for individual Sector/Block-Erase 2 ^N times typical (2 ¹ x 2 ⁴ = 32 ms)
26H	0001H	Maximum time out for Chip-Erase 2 ^N times typical (2 ¹ x 2 ⁶ = 128 ms)

T6.2 1117

TABLE 7: DEVICE GEOMETRY INFORMATION FOR SST39LF/VF200A

Address	Data	Data
27H	0012H	Device size = 2 ^N Byte (12H = 18; 2 ¹⁸ = 256 KByte)
28H	0001H	Flash Device Interface description; 0001H = x16-only asynchronous interface
29H	0000H	WWW. JOBY. CO. LTM WWW. JOBY. CO. LTW WW.
2AH	0000H	Maximum number of bytes in multi-byte write = 2 ^N (00H = not supported)
2BH		W. Too. COM. I. W. Too. COM. I.
2CH	0002H	Number of Erase Sector/Block sizes supported by device
2DH	003FH	Sector Information (y + 1 = Number of sectors; z x 256B = sector size)
2EH	0000H	y = 63 + 1 = 64 sectors (003FH = 63)
2FH	0010H	WWW. 100X.CO. T.W. WW. 1100X.CO.M.TW
30H	0000H	z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16)
31H	0003H	Block Information (y + 1 = Number of blocks; z x 256B = block size)
32H	0000H	y = 3 + 1 = 4 blocks (0003H = 3)
33H	0000H	MANN TO ST. COM. THE WAY ON CO.
34H	0001H	z = 256 x 256 Bytes = 64 KByte/block (0100H = 256)
		T7.2 1111
		M. 100 J. C.

WWW.100Y.COM.TW

^{1. 0030}H for SST39LF200A/400A/800A and 0027H for SST39VF200A/400A/800A

Data Sheet

TABLE 8: DEVICE GEOMETRY INFORMATION FOR SST39LF/VF400A

Address	Data	Data			
27H	0013H	Device size = 2 ^N Byte (13H = 19; 2 ¹⁹ = 512 KByte)			
28H	0001H	Flash Device Interface description; 0001H = x16-only asynchronous interface			
29H	0000H	WILL MINITOR CONCL. MANITOR COMP.			
2AH 🕥	0000H	Maximum number of bytes in multi-byte write = 2 ^N (00H = not supported)			
2BH	0000H	A COMPANY ANNION COMPANY WANTED TO COMPANY			
2CH	0002H	Number of Erase Sector/Block sizes supported by device			
2DH	007FH	Sector Information (y + 1 = Number of sectors; z x 256B = sector size)			
2EH	0000H	y = 127 + 1 = 128 sectors (007FH = 127)			
2FH	0010H	1001. CM: I.A. 100 . COM: I			
30H	0000H	z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16)			
31H	0007H	Block Information (y + 1 = Number of blocks; z x 256B = block size)			
32H	0000H	y = 7 + 1 = 8 blocks (0007H = 7)			
33H	0000H	100x. Car III MAL 100x. Car III MAL 100x.			
34H	0001H	z = 256 x 256 Bytes = 64 KByte/block (0100H = 256)			

T8.1 1117

TABLE 9: DEVICE GEOMETRY INFORMATION FOR SST39LF/VF800A

27H 0014H Device size = 2 ^N Bytes (14H = 20; 2 ²⁰ = 1 MByte) 28H 0001H Flash Device Interface description; 0001H = x16-only asynchronou	us interface
	us interface
2011 000011	
29H 0000H	
2AH 0000H Maximum number of bytes in multi-byte write = 2 ^N (00H = not supp	ported)
2BH 0000H	
2CH 0002H Number of Erase Sector/Block sizes supported by device	I.Co. TW
2DH 00FFH Sector Information (y + 1 = Number of sectors; z x 256B = sector si	size)
2EH 0000H y = 255 + 1 = 256 sectors (00FFH = 255)	
2FH 0010H	
30H 0000H z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16)	COM
31H 000FH Block Information (y + 1 = Number of blocks; z x 256B = block size)	
32H 0000H y = 15 + 1 = 16 blocks (000FH = 15)	
33H 0000H	
34H 0001H z = 256 x 256 Bytes = 64 KByte/block (0100H = 256)	N.100 r. COM:1
	T9.0 1117

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

Data Sheet

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature L	Jnder Bias		.roMi	55°C to +125°C
Storage Tempo	erature		65°C to +150°C	
D. C. Voltage of	on Any Pin to Ground Pote	XX-TXIXY	0.5V to V _{DD} +0.5V	
Transient Volta	age (<20 ns) on Any Pin to	54.CO	2.0V to V _{DD} +2.0V	
Voltage on A ₉	Pin to Ground Potential .			0.5V to 13.2V
Package Powe	er Dissipation Capability (1	a = 25°C)		1.0W
	Circuit Current ¹ orted for no more than one seco		shorted at a time.	50 mA
OPERATING RA	ANGE: SST39LF200A/400	A/800A		
Range	Ambient Temp	V _{DD}		

OPERATING RANGE: SST39LF200A/400A/800A

Range	Ambient Temp	V _{DD}
Commercial	0°C to +70°C	3.0-3.6V

OPERATING RANGE: SST39VF200A/400A/800A

Range	Ambient Temp	V_{DD}
Commercial	0°C to +70°C	2.7-3.6V
Industrial	-40°C to +85°C	2.7-3.6V

AC CONDITIONS OF TEST

Commercial	0°C to +70°C	2.7-3.6V			
Industrial	-40°C to +85°C	2.7-3.6V			
	WWW.	ON.COTTITY			
AC CONDITIONS	OF TEST				
Input Rise/Fall Tin	ne5 ns	To COM.	WW W	M. COM	
Output Load		= 30 pF for SST39LF2	200A/400A/800A	NW. LOW CON	
Output Load	C _L =	= 100 pF for SST39VF	-200A/400A/800A	1001.CO	
See Figures 15 ar	nd 16	100 Y. CO.	TW	M 1 1007.00	
	WY	MM. T. COM.	W		
	勝	特力材料886	-3-5753170		
	胜	特力电子(上海) 86-2	21-54151736		
	用生.	特力由子(深圳) 86-1	755-83298787		

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100X.COM

Data Sheet

TABLE 10: DC OPERATING CHARACTERISTICS

$V_{DD} = 3.0-3.6V$ for SST39LF200A/400A/800A and 2.7-3.6V for SST39VF200A/400A/800A¹

	TIOOY.COMITY	M. M.	Limits		W. 1001. COM. T.	
Symbol	Parameter	Min	Max	Units	Test Conditions	
I _{DD}	Power Supply Current	W	MW.100Y	COM.T	Address input=V _{ILT} /V _{IHT} , at f=1/T _{RC} Min, V _{DD} =V _{DD} Max	
	Read ²		30	mA	CE#=V _{IL} , OE#=WE#=V _{IH} , all I/Os open	
	Program and Erase	W Y	30	mA	CE#=WE#=V _{IL} , OE#=V _{IH}	
I _{SB}	Standby V _{DD} Current		20	μA	CE#=V _{IHC} , V _{DD} =V _{DD} Max	
ILI	Input Leakage Current		1 11.1	μA	V _{IN} =GND to V _{DD} , V _{DD} =V _{DD} Max	
I_{LO}	Output Leakage Current	LTW	10	μΑ	V _{OUT} =GND to V _{DD} , V _{DD} =V _{DD} Max	
V _{IL}	Input Low Voltage	TW	0.8	1007.	V _{DD} =V _{DD} Min	
V_{IH}	Input High Voltage	0.7V _{DD}		VY.C	V _{DD} =V _{DD} Max	
V_{IHC}	Input High Voltage (CMOS)	V _{DD} -0.3		V	V _{DD} =V _{DD} Max	
V _{OL}	Output Low Voltage	OW	0.2	V	I _{OL} =100 μA, V _{DD} =V _{DD} Min	
V_{OH}	Output High Voltage	V _{DD} -0.2		V00	I _{OH} =-100 μA, V _{DD} =V _{DD} Min	

T10.7 1117

TABLE 11: RECOMMENDED SYSTEM POWER-UP TIMINGS

Symbol	Parameter	Minimum	Units
T _{PU-READ} ¹	Power-up to Read Operation	100	μs
T _{PU-WRITE} ¹	Power-up to Program/Erase Operation	100	W µs W

TABLE 12: CAPACITANCE (Ta = 25°C, f=1 Mhz, other pins open)

Parameter	Description	Test Condition	Maximum
C _{I/O} ¹	I/O Pin Capacitance	$V_{I/O} = 0V$	12 pF
C _{IN} ¹	Input Capacitance	$V_{IN} = 0V$	6 pF

TABLE 13: RELIABILITY CHARACTERISTICS

Symbol	Parameter	Minimum Specification	Units	Test Method
N _{END} ^{1,2}	Endurance	10,000	Cycles	JEDEC Standard A117
T _{DR} ¹	Data Retention	100	Years	JEDEC Standard A103
I _{LTH} ¹	Latch Up	100 + I _{DD}	mA	JEDEC Standard 78

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

©2003 Silicon Storage Technology, Inc. S71117-07-000 11/03 12

^{1.} Typical conditions for the Active Current shown on the front data sheet page are average values at 25°C (room temperature), and V_{DD} = 3V for VF devices. Not 100% tested.

^{2.} Values are for 70 ns conditions. See the Multi-Purpose Flash Power Rating application note for further information.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{2.} N_{END} endurance rating is qualified as a 10,000 cycle minimum for the whole device. A sector- or block-level rating would result in a higher minimum specification.

AC CHARACTERISTICS

TABLE 14: READ CYCLE TIMING PARAMETERS VDD = 3.0-3.6V

AC CH	ARACTERISTICS					
TABLE 1	14: READ CYCLE TIMING PARAMETER		.6V 00A/400A-45	SST39LF200A/400A/800A-55		MIN
Symbol	Parameter	Min	Max	Min	Max	Units
T _{RC}	Read Cycle Time	45	COA	55	MAN	ns
T_CE	Chip Enable Access Time		45	·	55	ns
T_{AA}	Address Access Time		45	TIM	55	ns
T_{OE}	Output Enable Access Time		30	NT.	30	ns
T_{CLZ}^1	CE# Low to Active Output	0	M. T. CO	0	WW 11.	ns
T_{OLZ}^{1}	OE# Low to Active Output	0	M.Io. O.C.	0	WWW.10	ns
T _{CHZ} ¹	CE# High to High-Z Output		15	OM:I	15	ns
T _{OHZ} ¹	OE# High to High-Z Output		15	T.Mor	15	ns
T _{OH} ¹	Output Hold from Address Change	0 1	W 100Y	0	MM	ns

TABLE 15: READ CYCLE TIMING PARAMETERS V_{DD} = 2.7-3.6V

	WWW.to CV.C	SST39VF200	OA/400A/800A-70	SST39VF200A/400A/800A-90		N N
Symbol	Parameter	Min	Max	Min	Max	Units
T _{RC}	Read Cycle Time	70	WAX	90		ns
T_CE	Chip Enable Access Time	MT.W	70	1007.	90	ns
T_{AA}	Address Access Time	CO. TV	70	1100X.Co	90	ns
T_OE	Output Enable Access Time	A'COM.	35	W. TOOX.CO	45	ns
T_{CLZ}^{1}	CE# Low to Active Output	0	N N	0 0	DIVI	ns
T_{OLZ}^1	OE# Low to Active Output	0	Lin In	XXX.10	OW.	ns
T _{CHZ} ¹	CE# High to High-Z Output	OOY	20	1007.	30	ns
T _{OHZ} 1	OE# High to High-Z Output	OUN.COM	20	100X	30	ns
T _{OH} ¹	Output Hold from Address Change	0 CO	VI.	0	COM. TW	ns

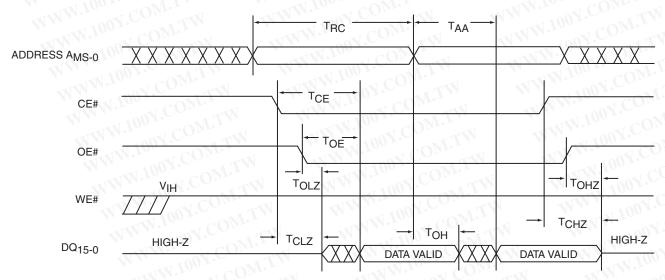
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

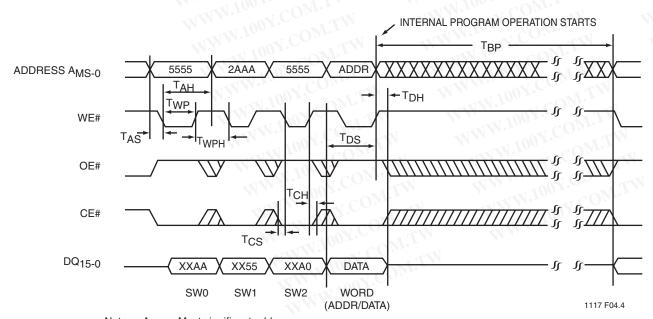
Data Sheet


TABLE 16: PROGRAM/ERASE CYCLE TIMING PARAMETERS

Symbol	Parameter	Min	Max	Units
T _{BP}	Word-Program Time		20	μs
T _{AS}	Address Setup Time	0	W 1 100X	ns
T _{AH}	Address Hold Time	30	WWW.	ns
T _{CS}	WE# and CE# Setup Time	0	MW.Io	ns
T_CH	WE# and CE# Hold Time	0	W.10	ns
T _{OES}	OE# High Setup Time	0	WWW.	ns
T _{OEH}	OE# High Hold Time	10	MM	ns
T_{CP}	CE# Pulse Width	40	WWW.	ns
T_WP	WE# Pulse Width	40		ns CC
T _{WPH} ¹	WE# Pulse Width High	30		1 ns
T _{CPH} ¹	CE# Pulse Width High	30	All	ns
T_DS	Data Setup Time	30	WV	ns
T_{DH}^1	Data Hold Time	CO.0.	N XX	ns
T_{IDA}^{1}	Software ID Access and Exit Time	COMIT	150	ns
T_SE	Sector-Erase	T.MOD.T	25	ms
T_BE	Block-Erase	DY.CO.	25	ms
T_{SCE}	Chip-Erase	ON COM	100	ms

T16.0 111

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

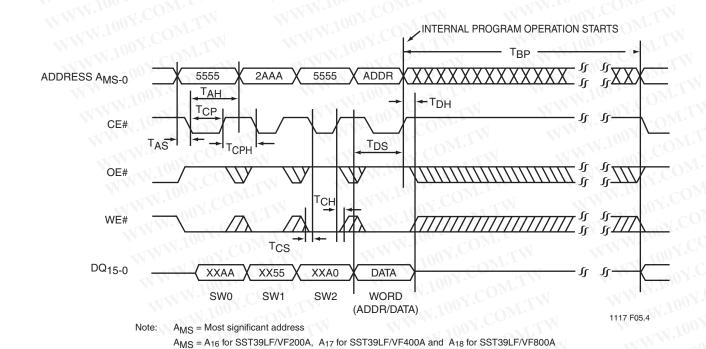


Note: A_{MS} = Most significant address

 $A_{MS} = A_{16}$ for SST39LF/VF200A, A_{17} for SST39LF/VF400A and A_{18} for SST39LF/VF800A

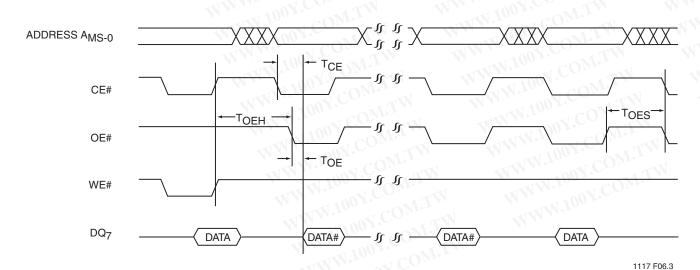
FIGURE 4: READ CYCLE TIMING DIAGRAM

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

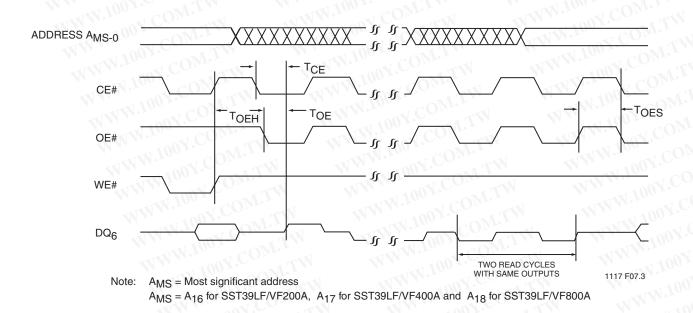


Note: $A_{MS} = Most significant address$

 $A_{MS}=A_{16}$ for SST39LF/VF200A, $\,A_{17}$ for SST39LF/VF400A and $\,A_{18}$ for SST39LF/VF800A X can be $V_{II}\,$ or $V_{IH},$ but no other value.


FIGURE 5: WE# CONTROLLED PROGRAM CYCLE TIMING DIAGRAM

X can be V_{IL} or V_{IH} , but no other value.


FIGURE 6: CE# CONTROLLED PROGRAM CYCLE TIMING DIAGRAM

Note: $A_{MS} = Most significant address$ $A_{MS} = A_{16}$ for SST39LF/VF200A, A_{17} for SST39LF/VF400A and A_{18} for SST39LF/VF800A

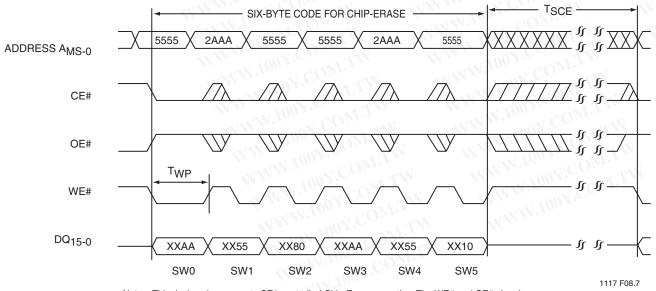
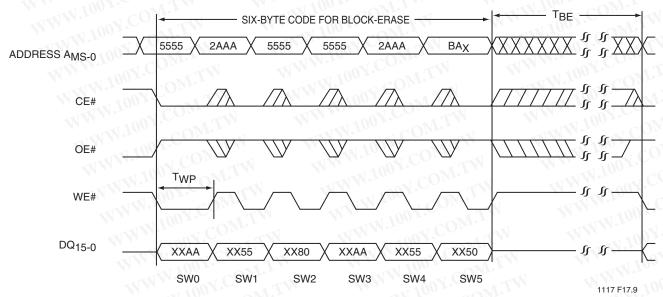

FIGURE 7: DATA# POLLING TIMING DIAGRAM

FIGURE 8: TOGGLE BIT TIMING DIAGRAM

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Note: This device also supports CE# controlled Chip-Erase operation. The WE# and CE# signals are interchageable as long as minimum timings are met. (See Table 16)


A_{MS} = Most significant address

 $A_{MS} = A_{16}$ for SST39LF/VF200A, A_{17} for SST39LF/VF400A and A_{18} for SST39LF/VF800A

 \boldsymbol{X} can be \boldsymbol{V}_{IL} or $\boldsymbol{V}_{IH},$ but no other value.

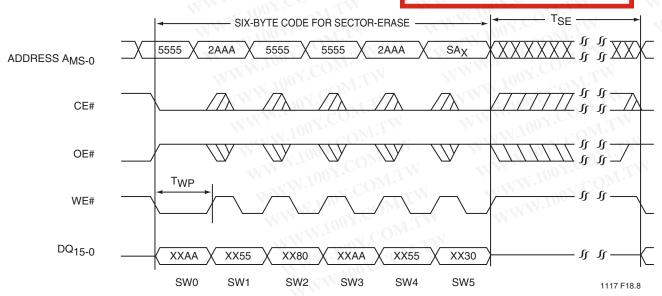
FIGURE 9: WE# CONTROLLED CHIP-ERASE TIMING DIAGRAM

Data Sheet

Note: This device also supports CE# controlled Block-Erase operation. The WE# and CE# signals are interchangable as long as minimum timings are met. (See Table 16)

interchageable as long as minimum timings are met. (See Table 16)

BA_X = Block Address


A_{MS} = Most significant address

 $A_{MS} = A_{16}$ for SST39LF/VF200A, A_{17} for SST39LF/VF400A and A_{18} for SST39LF/VF800A

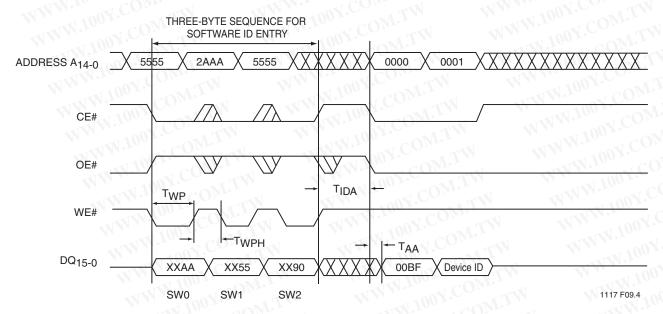
X can be VIL or VIH, but no other value.

FIGURE 10: WE# CONTROLLED BLOCK-ERASE TIMING DIAGRAM

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Note: This device also supports CE# controlled Sector-Erase operation. The WE# and CE# signals are interchageable as long as minimum timings are met. (See Table 16)

 SA_X = Sector Address


A_{MS} = Most significant address

 $A_{MS} = A_{16}$ for SST39LF/VF200A, A_{17} for SST39LF/VF400A and A_{18} for SST39LF/VF800A

 \boldsymbol{X} can be \boldsymbol{V}_{IL} or $\boldsymbol{V}_{IH},$ but no other value.

FIGURE 11: WE# CONTROLLED SECTOR-ERASE TIMING DIAGRAM

Device ID = 2789H for SST39LF/VF200A, 2780H for SST39LF/VF400A and 2781H for SST39LF/VF800A Note: X can be V_{IL} or V_{IH} , but no other value.

FIGURE 12: SOFTWARE ID ENTRY AND READ

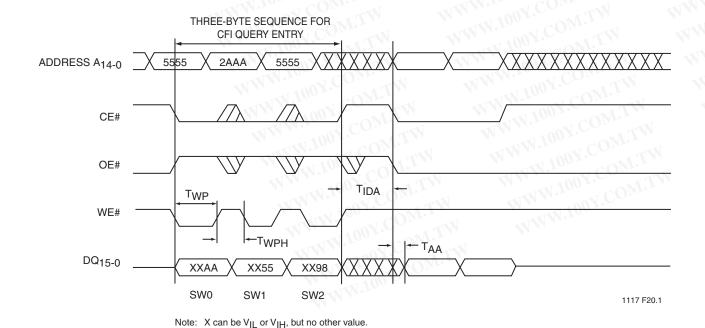
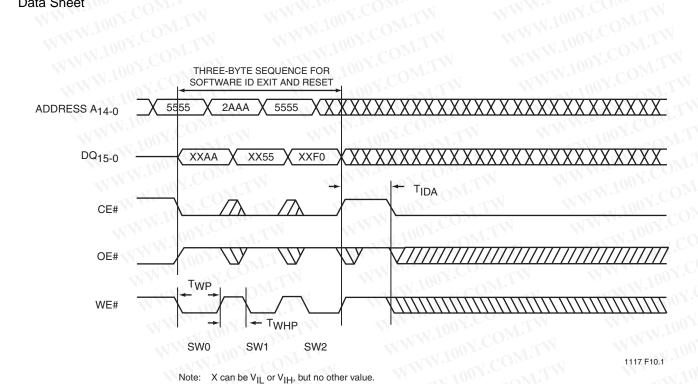
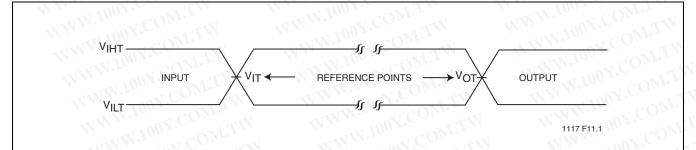


FIGURE 13: CFI QUERY ENTRY AND READ

WWW.100Y.CC

Data Sheet




FIGURE 14: SOFTWARE ID EXIT/CFI EXIT

WWW.100Y.COM.

WWW.100Y.COM.TW 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM

AC test inputs are driven at V_{IHT} (0.9 V_{DD}) for a logic "1" and V_{ILT} (0.1 V_{DD}) for a logic "0". Measurement reference points for inputs and outputs are V_{IT} (0.5 V_{DD}) and V_{OT} (0.5 V_{DD}). Input rise and fall times (10% \leftrightarrow 90%) are <5 ns.

Note: V_{IT} - V_{INPUT} Test V_{OT} - V_{OUTPUT} Test V_{IHT} - V_{INPUT} HIGH Test V_{ILT} - V_{INPUT} LOW Test

FIGURE 15: AC INPUT/OUTPUT REFERENCE WAVEFORMS

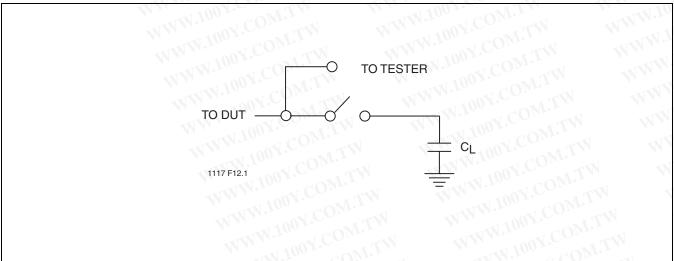


FIGURE 16: A TEST LOAD EXAMPLE

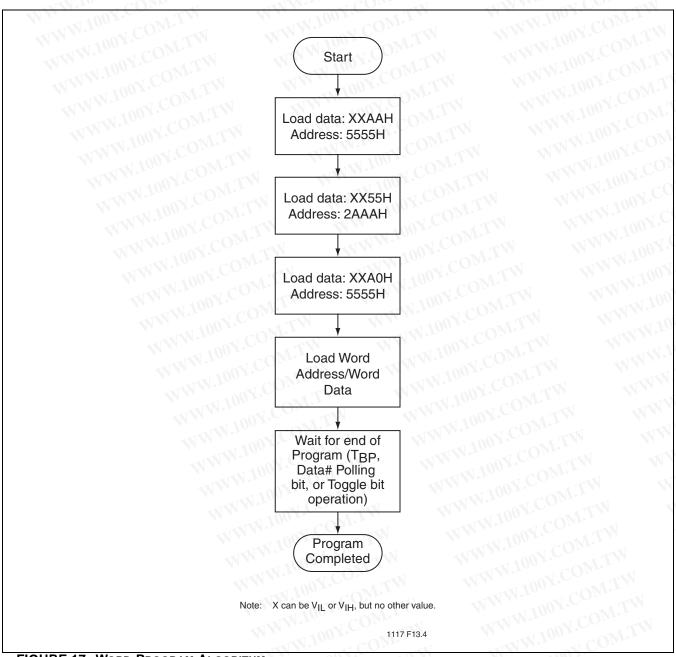


FIGURE 17: WORD-PROGRAM ALGORITHM

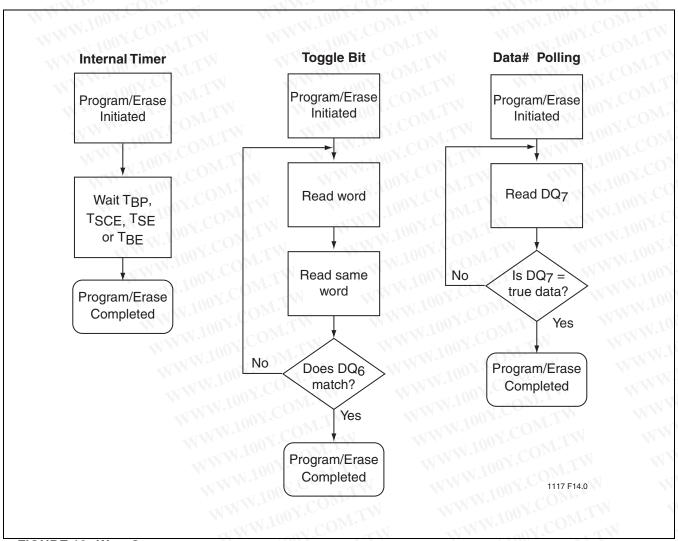


FIGURE 18: WAIT OPTIONS

Data Sheet

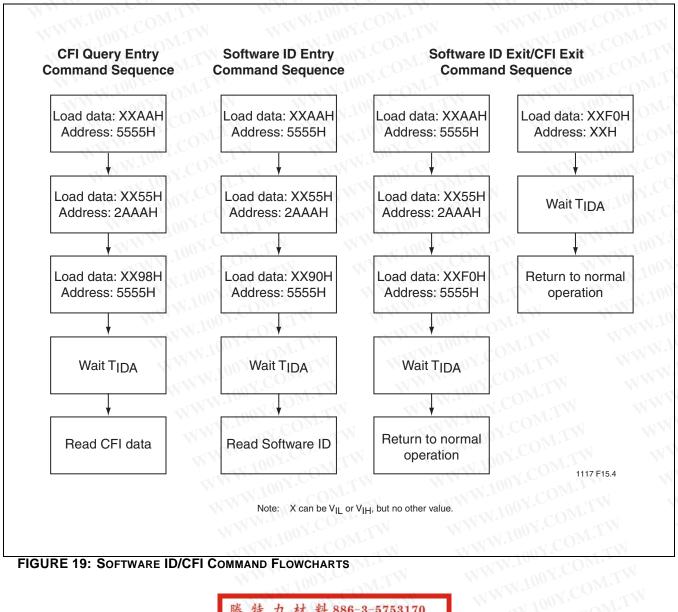
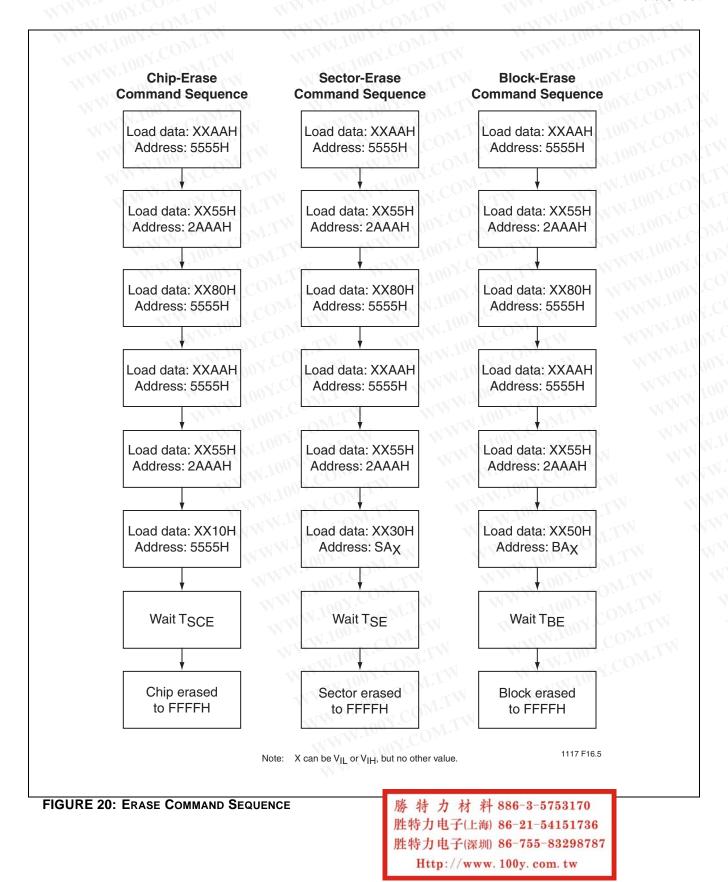



FIGURE 19: SOFTWARE ID/CFI COMMAND FLOWCHARTS

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.T

PRODUCT ORDERING INFORMATION

Data Sheet

Valid combinations for SST39LF200A

SST39LF200A-45-4C-EK SST39LF200A-45-4C-B3K SST39LF200A-45-4C-EKE SST39LF200A-45-4C-B3KE SST39LF200A-55-4C-EK SST39LF200A-55-4C-B3K SST39LF200A-55-4C-EKE SST39LF200A-55-4C-B3KE

Valid combinations for SST39VF200A

SST39VF200A-70-4C-EK SST39VF200A-70-4C-B3K SST39VF200A-70-4C-EKE SST39VF200A-70-4C-B3KE SST39VF200A-90-4C-EK[†] SST39VF200A-90-4C-B3K[†] SST39VF200A-90-4C-EKE[†] SST39VF200A-90-4C-B3KE[†] SST39VF200A-70-4I-EK SST39VF200A-70-4I-B3K SST39VF200A-70-4I-EKE SST39VF200A-70-4I-B3KE SST39VF200A-90-4I-EK SST39VF200A-90-4I-B3K SST39VF200A-90-4I-EKE SST39VF200A-90-4I-B3KE

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

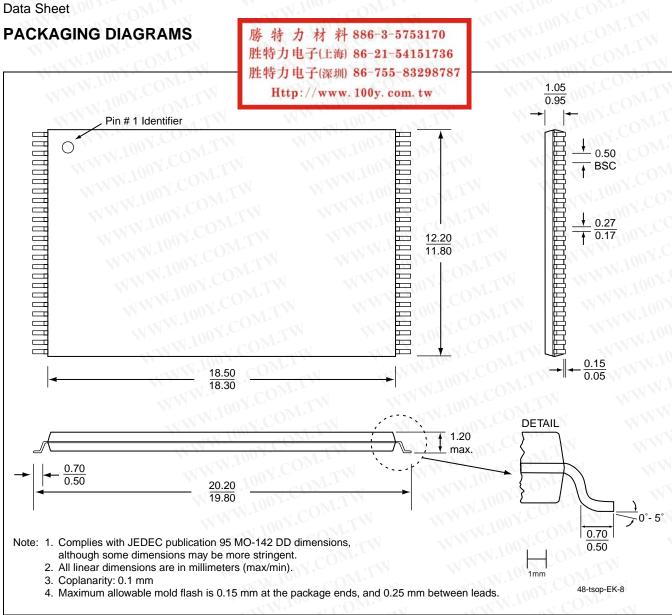
Valid combinations for SST39LF400A

SST39LF400A-45-4C-EK SST39LF400A-45-4C-B3K SST39LF400A-45-4C-EKE SST39LF400A-45-4C-B3KE SST39LF400A-55-4C-EK SST39LF400A-55-4C-B3K SST39LF400A-55-4C-EKE SST39LF400A-55-4C-B3KE

Valid combinations for SST39VF400A

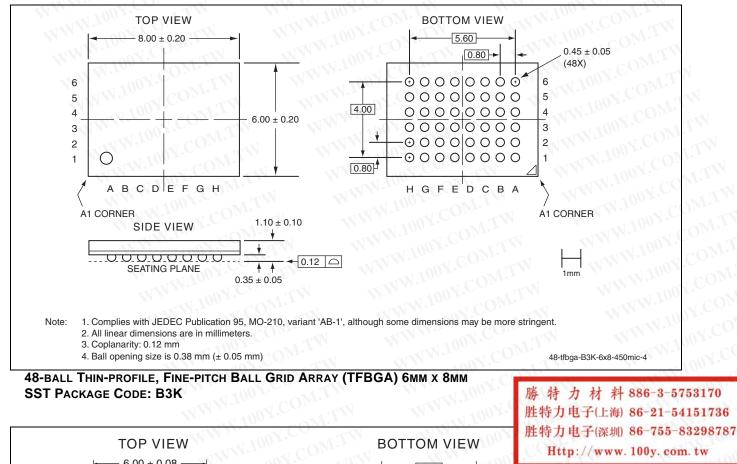
SST39LF400A-55-4C-EK SST39LF400A-55-4C-EKE	SST39LF400A-55-4C-B3K SST39LF400A-55-4C-B3KE			
Valid combinations for S	ST39VF400A			
SST39VF400A-70-4C-EK SST39VF400A-70-4C-EKE SST39VF400A-90-4C-EK [†] SST39VF400A-90-4C-EKE [†]	SST39VF400A-70-4C-B3K SST39VF400A-70-4C-B3KE SST39VF400A-90-4C-B3K [†] SST39VF400A-90-4C-B3KE [†]	SST39VF400A-70-4C-C1Q SST39VF400A-70-4C-C1QE	SST39VF400A-70-4C-M1Q SST39VF400A-70-4C-M1QE	
SST39VF400A-70-4I-EK SST39VF400A-70-4I-EKE SST39VF400A-90-4I-EK SST39VF400A-90-4I-EKE	SST39VF400A-70-4I-B3K SST39VF400A-70-4I-B3KE SST39VF400A-90-4I-B3K SST39VF400A-90-4I-B3KE	SST39VF400A-70-4I-C1Q SST39VF400A-70-4I-C1QE	SST39VF400A-70-4I-M1Q SST39VF400A-70-4I-M1QE	

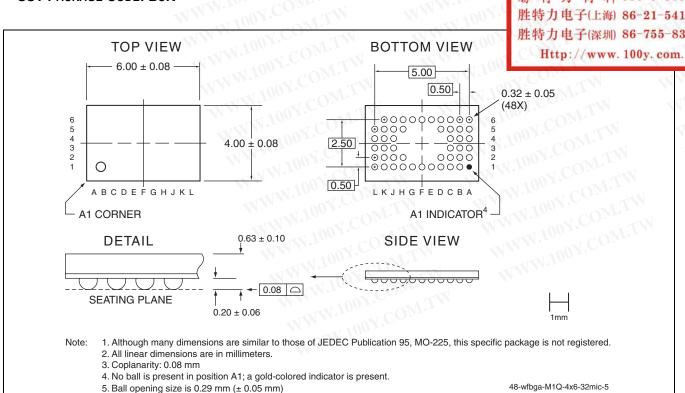
Valid combinations for SST39LF800A


SST39LF800A-55-4C-EK SST39LF800A-55-4C-B3K SST39LF800A-55-4C-EKE SST39LF800A-55-4C-B3KE

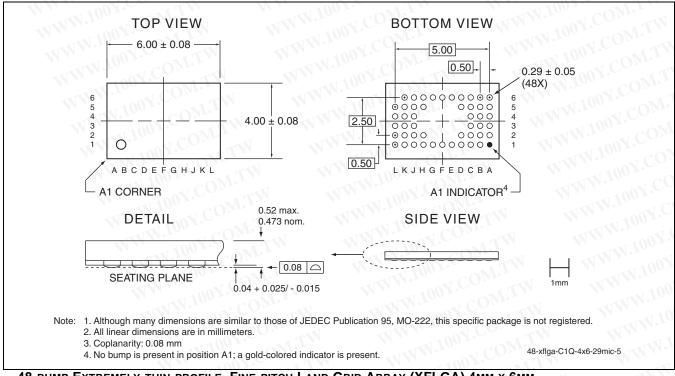
Valid combinations for SST39VF800A

SST39LF800A-55-4C-EKE	SST39LF800A-55-4C-B3KE		
Valid combinations for S	ST39VF800A		
SST39VF800A-70-4C-EK SST39VF800A-70-4C-EKE SST39VF800A-90-4C-EK [†] SST39VF800A-90-4C-EKE [†]	SST39VF800A-70-4C-B3K SST39VF800A-70-4C-B3KE SST39VF800A-90-4C-B3K [†] SST39VF800A-90-4C-B3KE [†]	SST39VF800A-70-4C-C1Q SST39VF800A-70-4C-C1QE	SST39VF800A-70-4C-M1Q SST39VF800A-70-4C-M1QE
SST39VF800A-70-4I-EK SST39VF800A-70-4I-EKE SST39VF800A-90-4I-EK SST39VF800A-90-4I-EKE	SST39VF800A-70-4I-B3K SST39VF800A-70-4I-B3KE SST39VF800A-90-4I-B3K SST39VF800A-90-4I-B3KE	SST39VF800A-70-4I-C1Q SST39VF800A-70-4I-C1QE	SST39VF800A-70-4I-M1Q SST39VF800A-70-4I-M1QE


Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.


† These 90 ns parts will be phased out and replaced by 70 ns parts in 2004. Customers should use 70 ns parts for new designs and qualifications.

48-LEAD THIN SMALL OUTLINE PACKAGE (TSOP) 12MM X 20MM SST PACKAGE CODE: EK



48-BALL VERY-VERY-THIN-PROFILE, FINE-PITCH BALL GRID ARRAY (WFBGA) 4MM X 6MM SST PACKAGE CODE: M1Q

Data Sheet

48-BUMP EXTREMELY-THIN-PROFILE, FINE-PITCH LAND GRID ARRAY (XFLGA) 4MM X 6MM SST PACKAGE CODE: C1Q

TABLE 17: REVISION HISTORY

Number		Description	Date
04	•	2002 Data Book	May 2002
05	•	Added footnotes for MPF power usage and Typical conditions to Table 10 on page 12	Mar 2003
	•	Clarified the Test Conditions for Power Supply Current and Read parameters in Table 10 on page 12	
	•	Part number changes - see page 27 for additional information	
	•	New Micro-Package part numbers added for SST39VF400A and SST39VF800A	
06	•	New Micro-Package part numbers added for SST39VF400A / 800A (see page 27)	Oct 2003
07	•	2004 Data Book	Nov 2003
	•	Updated the B3K, M1Q, and C1Q package diagrams	
	•	Added non-Pb MPNs and removed footnote (see page 27)	