PC923LONSZOF Series

Description

PC923LONSZOF Series contains a LED optically coupled to an OPIC chip．

It is packaged in a 8 pin DIP，available in SMT gullwing lead form option．

Input－output isolation voltage（rms）is 5.0 kV ，High speed response（tphL， $\mathrm{t}_{\mathrm{PLH}}:$ MAX． $0.5 \mu \mathrm{~s}$ ）．

Features

1． 8 pin DIP package
2．Double transfer mold package
（Ideal for Flow Soldering）
3．Built－in direct drive circuit for MOSFET／IGBT drive （loip，lo2p ： 0.6 A）
4．High speed response（tphL，tpLH ：MAX． $0.5 \mu \mathrm{~s}$ ）
5 ．Wide operating supply voltage range （ $\mathrm{V}_{\mathrm{cc}}=15$ to 30 V ）
6．High noise immunity due to high instantaneous common mode rejection voltage（CMH：MIN．－ $15 \mathrm{kV} / \mathrm{us}, \mathrm{CM}_{\mathrm{L}}$ ：MIN． $15 \mathrm{kV} / \mathrm{us}$ ）
7．High isolation voltage between input and output $\left(\mathrm{V}_{\text {iso（rms）}}: 5.0 \mathrm{kV}\right.$ ）
8．Lead－free and RoHS directive compliant

High Speed，Gate Drive DIP 8 pin ＊OPIC Photocoupler

Agency approvals／Compliance

1．Recognized by UL1577（Double protection isolation）， file No．E64380（as model No．PC923L）
2．Approved by VDE，DIN EN60747－5－2 ${ }^{(*)}$（as an option），file No． 40008898 （as model No．PC923L）
3．Package resin ：UL flammability grade（94V－0）
${ }^{(*)}$ DIN EN60747－5－2 ：successor standard of DIN VDE0884

Applications

1．IGBT／MOSFET gate drive for inverter control

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－54151736
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw
＊＂OPIC＂（Optical IC）is a trademark of the SHARP Corporation．An OPIC consists of a light－detecting element and a signal－processing circuit integrated onto a single chip．

Internal Connection Diagram

（1） NC （5） O_{1}
（2）Anode
（6） O_{2}
（3）Cathode
（7）GND
（4） NC
（8） V_{CC}

Truth table

Input	O_{2} Terminal output	Tr．1	Tr．2
ON	High level	ON	OFF
OFF	Low level	OFF	ON

Outline Dimensions
（Unit ：mm）
1．Through－Hole［ex．PC923LONSZOF］

2．Through－Hole（VDE option）［ex．PC923LOYSZOF］

3．SMT Gullwing Lead－Form［ex．PC923LONIPOF］

$$
\begin{aligned}
& \text { Primary side } \\
& \text { mark }
\end{aligned}
$$

Product mass ：approx． 0.51 g

4．SMT Gullwing Lead－Form（VDE option） ［ex．PC923LOYIPOF］

Product mass ：approx．0．51g
Plating material ： $\mathrm{SnCu}(\mathrm{Cu}$ ：TYP．2\％）

Date code（3 digit）

				2nd digit		3rd digit	
Year of production				Month of production		Week of production	
A．D．	Mark	A．D	Mark	Month	Mark	Week	Mark
1990	A	2002	P	January	1	1st	1
1991	B	2003	R	February	2	2nd	2
1992	C	2004	S	March	3	3rd	3
1993	D	2005	T	April	4	4th	4
1994	E	2006	U	May	5	5．6th	
1995	F	2007	V	June	6		
1996	H	2008	W	July	7		
1997	J	2009	X	August	8		
1998	K	2010	A	September	9		
1999	L	2011	B	October	O		
2000	M	2012	C	November	N		
2001	N	\vdots	\vdots	December	D		

repeats in a 20 year cycle

Country of origin

Japan

Rank mark

There is no rank mark indicator．

－Absolute Maximum Ratings			$\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$
Parameter	Symbol	Rating	Unit
Input ${ }^{* 1}$ Forward current	I_{F}	20	mA
Input Reverse voltage	V_{R}	5	V
Supply voltage	V_{CC}	35	V
O_{1} output current	I_{01}	0.1	A
${ }^{* 2} \mathrm{O}_{1}$ Peak output current	$\mathrm{I}_{\text {O1P }}$	0.6	A
Output O_{2} output current	$\mathrm{I}_{\mathrm{O} 2}$	0.1	A
${ }^{* 2} \mathrm{O}_{2}$ Peak output current	$\mathrm{I}_{\text {O2P }}$	0.6	A
O_{1} output voltage	$\mathrm{V}_{\mathrm{O} 1}$	35	V
${ }^{* 3}$ Power dissipation	P_{O}	500	mW
${ }^{* 4}$ Total power dissipation	$\mathrm{P}_{\text {tot }}$	550	mW
${ }^{* 5}$ Isolation voltage	$\mathrm{V}_{\text {iso（rms）}}$	5.0	kV
Operating temperature	$\mathrm{T}_{\text {opr }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
${ }^{* 6}$ Soldering temperature	$\mathrm{T}_{\text {sol }}$	270	${ }^{\circ} \mathrm{C}$

勝 特 力材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw
＊1 The derating factors of a absolute maximum ratings due to ambient
temperature are shown in Fig． 10
＊2 Pulse width $\leq 0.15 \mu \mathrm{~s}$ ，Duty ratio ： 0.01
＊3， 4 The derating factors of a absolute maximum ratings due to ambient temperature are shown in Fig． 11
＊5 AC for 1 minute， 40 to $60 \% \mathrm{RH}, \mathrm{f}=60 \mathrm{~Hz}$
＊6 For 10s
Electro－optical Characteristics＊7
（Unless otherwise specified $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {opr }}$ ）

	Parameter	Symbol	Conditions	MIN．	TYP．	MAX．	Unit
	Forward voltage	V_{Fl}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	－	1.6	1.75	V
$\overline{\#}$		$\mathrm{V}_{\mathrm{F} 2}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0.2 \mathrm{~mA}$	1.2	1.5	－	V
Ξ	Reverse current	I_{R}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	－	－	10	$\mu \mathrm{A}$
	Terminal capacitance	C_{t}	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	－	60	150	pF
000	Supply voltage	V_{CC}	－	15	－	30	V
	O_{1} Low level output voltage	$\mathrm{V}_{\text {OIL }}$	$\mathrm{V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 1}=0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	－	0.2	0.4	V
	O_{2} High level output voltage	$\mathrm{V}_{\mathrm{O} 2 \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O} 1}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 2}=-0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	20	22	－	V
	O_{2} Low level output voltage	$\mathrm{V}_{\text {O2L }}$	$\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 2}=0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	－	0.5	0.8	V
	O_{1} leak current	$\mathrm{I}_{\text {OIL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{Ol}}=35 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	－	－	500	$\mu \mathrm{A}$
	O_{2} leak current	$\mathrm{I}_{\mathrm{OLL}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O} 2}=35 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	－	－	500	$\mu \mathrm{A}$
	＊9 High level supply current	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	－	1.3	3.0	mA
	＊9 Low level supply current	$\mathrm{I}_{\text {CCL }}$	$\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	－	1.3	3.0	mA
	＊8＂Low \rightarrow High＂	$\mathrm{I}_{\text {FLH }}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$	0.3	1.5	3.0	mA
	input threshold current		$\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$	0.2	－	5.0	mA
	Isolation resistance	$\mathrm{R}_{\text {ISO }}$	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{DC} 500 \mathrm{~V}, 40$ to $60 \% \mathrm{RH}$	5×10^{10}	10^{11}	－	Ω
	．${ }^{\text {a }}$＂Low \rightarrow High＂propagation delay time	$\mathrm{t}_{\text {PLH }}$	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\ \mathrm{R}_{\mathrm{G}}=47 \Omega, \mathrm{C}_{\mathrm{G}}=3000 \mathrm{pF} \end{gathered}$	－	0.3	0.5	$\mu \mathrm{s}$
	0＂High \rightarrow Low＂propagation delay time	$\mathrm{t}_{\text {PHL }}$		－	0.3	0.5	$\mu \mathrm{s}$
	응 Rise time	t_{r}		－	0.2	0.5	$\mu \mathrm{s}$
		t_{f}		－	0.2	0.5	$\mu \mathrm{s}$
	Instantaneous common mode rejection voltage （High level output）	CM_{H}	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \quad \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV} \mathrm{~V}_{(\mathrm{p}-\mathrm{p})} \\ \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \\ \Delta \mathrm{~V}_{\mathrm{O} 2 \mathrm{H}}=2.0 \mathrm{~V} \end{gathered}$	－15	－	－	kV／$\mu \mathrm{s}$
	Instantaneous common mode rejection voltage （Low level output）	CM_{L}	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV} \mathrm{~V}_{(\mathrm{p}-\mathrm{p})} \\ \mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \\ \Delta \mathrm{~V}_{\mathrm{O} 2 \mathrm{~L}}=2.0 \mathrm{~V} \end{gathered}$	15	－	－	kV／$\mu \mathrm{s}$

[^0]
Model Line－up

Lead Form	Through－Hole			SMT Gullwing		
Package	Sleeve				Taping	
	50pcs／sleeve			$1000 \mathrm{pcs} /$ reel		
DIN EN60747－5－2	-	Approved	-	Approved	-	Approved
Model No．	PC923LONSZ0F	PC923LOYSZOF	PC923LONIZOF	PC923LOYIZOF	PC923LONIP0F	PC923LOYIP0F

Please contact a local SHARP sales representative to inquire about production status．

$$
\begin{gathered}
\text { 勝 特 力材 料 } 886-3-5753170 \\
\text { 胜特力电子(上海) } 86-21-54151736 \\
\text { 胜特力电子(深圳) } 86-755-83298787 \\
\text { Http://www. } 100 \mathrm{y} . \mathrm{com} . \mathrm{tw}
\end{gathered}
$$

Fig． 1 Test Circuit for O_{1} Low Level Output Voltage

Fig． 2 Test Circuit for O_{2} High Level Output Voltage

$$
\begin{gathered}
\text { 勝 特 力 材 料 } 886-3-5753170 \\
\text { 胜特力电子(上海) } 86^{-21-54151736} \\
\text { 胜特力电子(深圳) } 86^{-755}-83298787 \\
\text { Http://www. } 100 \mathrm{y} . \text { com. tw }
\end{gathered}
$$

Fig． 3 Test Circuit for O_{2} Low Level Output Voltage

Fig． 5 Test Circuit for O_{2} Leak Current

Fig． 4 Test Circuit for O_{1} Leak Current

Fig． 6 Test Circuit for High Level／Low Level Supply Current

Fig． 7 Test Circuit for＂Low \rightarrow High＂Input Threshold Current

> 勝 特 力 材 料 $886-3-5753170$
> 胜特力电子(上海) $86^{-2}-\mathbf{2 1 - 5 4 1 5 1 7 3 6}$
> 胜特力电子(深圳) $86^{-755-83298787}$
> Http://www. 100 y. com. tw

Fig． 8 Test Circuit for Response Time

Fig． 9 Test Circuit for Instantaneous Common Mode Rejection Voltage

Fig． 10 Forward Current vs．Ambient Temperature

Fig． 12 Forward Current vs．Forward Voltage

Fig． 14 ＂Low \rightarrow High＂Relative Input Threshold Current vs．Ambient Temperature

Fig． 11 Power Dissipation vs．Ambient Temperature

Fig． 13 ＂Low \rightarrow High＂Relative Input Threshold Current vs．Supply Voltage

Fig． $15 \mathrm{O}_{1}$ Low Level Output Voltage vs． O_{1} Output Current

Fig． 16 O $_{1}$ Low Level Output Voltage vs Ambient Temperature

Fig． $18 \mathrm{O}_{2}$ High Level Output Voltage vs． Supply Voltage

Fig． $20 \mathrm{O}_{2}$ Low Level Output Voltage vs． O_{2} Output Current

Fig． $17 \mathrm{O}_{2}$ Output Voltage Drop vs．

O_{2} Output Current

Fig． $19 \mathrm{O}_{2}$ High Level Output Voltage vs． Ambient Temperature

Fig． $21 \mathrm{O}_{2}$ Low Level Output Voltage vs． Ambient Temperature

Ambient temperature $\mathrm{T}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$

Fig． 22 High Level Supply Current vs． Supply Voltage

Fig． 24 High Level Supply Current vs． Ambient Temperature

Fig． 26 Propagation Delay Time vs． Forward Current

Fig． 23 Low Level Supply Current vs． Supply Voltage

Fig． 25 Low Level Supply Current vs． Ambient Temperature

Fig． 27 Propagation Delay Time vs．
Ambient Temperature

Remarks ：Please be aware that all data in the graph are just for reference and not for guarantee．

Design Considerations

－Recommended operating conditions

Parameter	Symbol	MIN．	TYP．	MAX．	Unit
Forward current	I_{F}	10	-	20	mA
Supply voltage	V_{CC}	15	-	30	V
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-40	-	70	${ }^{\circ} \mathrm{C}$

－Notes about static electricity

Transistor of detector side in bipolar configuration may be damaged by static electricity due to its minute design．
When handling these devices，general countermeasure against static electricity should be taken to avoid breakdown of devices or degradation of characteristics．

－Design guide

In order to stabilize power supply line，we should certainly recommend to connect a by－pass capacitor of $0.01 \mu \mathrm{~F}$ or more between V_{cc} and GND near the device．

In case that some sudden big noise caused by voltage variation is provided between primary and secondary terminals of photocoupler some current caused by it is floating capacitance may be generated and result in false operation since current may go through LED or current may change．
If the photocoupler may be used under the circumstances where noise will be generated we recommend to use the bypass capacitors at the both ends of LED．

The detector which is used in this device，has parasitic diode between each pins and GND．
There are cases that miss operation or destruction possibly may be occurred if electric potential of any pin becomes below GND level even for instant．
Therefore it shall be recommended to design the circuit that electric potential of any pin does not become below GND level．

This product is not designed against irradiation and incorporates non－coherent LED．

This photocoupler is dedicated to the use for IGBT or MOSFET Gate Drive． Please do not use this for the other application．
As mentioned below，when the input is on，if DC load（resistor etc．）is connected between O_{2} output pin 6 and GND pin 7 and if the electric potential $\mathrm{V}_{\mathrm{O} 2}$ goes approx． 2 V below than electric potential V_{cc} pin 8 continuously，supply current Icc may flow more than usually and go beyond power dissipation．

[^1]

－Degradation

In general，the emission of the LED used in photocouplers will degrade over time．
In the case of long term operation，please take the general LED degradation（ 50% degradation over 5 years） into the design consideration．
Please decide the input current which become 2 times of MAX．IfLH．

－Recommended Foot Print（reference）

（Unit ：mm）

> 勝 特 力 材 料 $886-3-5753170$胜特力电子(上海) $86-21-54151736$胜特力电子(深圳) $86-755-83298787$
> Http://www. $100 \mathrm{y} . \mathrm{com} . \mathrm{tw}$

Manufacturing Guidelines

－Soldering Method

Reflow Soldering：

Reflow soldering should follow the temperature profile shown below．
Soldering should not exceed the curve of temperature profile and time．
Please don＇t solder more than twice．

Flow Soldering ：

Due to SHARP＇s double transfer mold construction submersion in flow solder bath is allowed under the below listed guidelines．

Flow soldering should be completed below $270^{\circ} \mathrm{C}$ and within 10 s．
Preheating is within the bounds of 100 to $150^{\circ} \mathrm{C}$ and 30 to 80 s ．
Please don＇t solder more than twice．

Hand soldering

Hand soldering should be completed within 3 s when the point of solder iron is below $400^{\circ} \mathrm{C}$ ．
Please don＇t solder more than twice．

Other notices

Please test the soldering method in actual condition and make sure the soldering works fine，since the impact on the junction between the device and PCB varies depending on the tooling and soldering conditions．

> 勝 特 力 材 料 $886-3-5753170$
> 胜特力电子(上海) $86^{-21-54151736}$
> 胜特力电子(深圳) $86-755-83298787$
> Http://www. $100 \mathrm{y} . \mathrm{com} . \mathrm{tw}$

Cleaning instructions

Solvent cleaning：

Solvent temperature should be $45^{\circ} \mathrm{C}$ or below Immersion time should be 3 minutes or less

Ultrasonic cleaning：

The impact on the device varies depending on the size of the cleaning bath，ultrasonic output，cleaning time， size of PCB and mounting method of the device．
Therefore，please make sure the device withstands the ultrasonic cleaning in actual conditions in advance of mass production．

Recommended solvent materials：

Ethyl alcohol，Methyl alcohol and Isopropyl alcohol
In case the other type of solvent materials are intended to be used，please make sure they work fine in actual using conditions since some materials may erode the packaging resin．

－Presence of ODC

This product shall not contain the following materials．
And they are not used in the production process for this product．
Regulation substances：CFCs，Halon，Carbon tetrachloride，1．1．1－Trichloroethane（Methylchloroform）
Specific brominated flame retardants such as the PBBOs and PBBs are not used in this product at all．

This product shall not contain the following materials banned in the RoHS Directive（2002／95／EC）．
－Lead，Mercury，Cadmium，Hexavalent chromium，Polybrominated biphenyls（PBB），Polybrominated diphenyl ethers（PBDE）．

```
勝 特 力 材 料 886-3-5753170
胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
    Http://www. 100y. com. tw
```

Package specification

－Sleeve package

Package materials

Sleeve ：HIPS（with anti－static material）
Stopper：Styrene－Elastomer

Package method

MAX． 50 pcs．of products shall be packaged in a sleeve．
Both ends shall be closed by tabbed and tabless stoppers．
The product shall be arranged in the sleeve with its primary side mark on the tabless stopper side．
MAX． 20 sleeves in one case．
Sleeve outline dimensions

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y ．com．tw

－Tape and Reel package

Package materials
Carrier tape ：A－PET（with anti－static material）
Cover tape ：PET（three layer system）
Reel：PS
Carrier tape structure and Dimensions

Dimensions List							
A	B	C	D	E	F	G	
$16.0^{ \pm 0.3}$	$7.5^{ \pm 0.1}$	$1.75^{ \pm 0.1}$	$12.0^{ \pm 0.1}$	$2.0^{ \pm 0.1}$	$4.0^{ \pm 0.1}$	$\phi 1.5^{ \pm 0.0}$	
H	I	J	K				
$10.4^{ \pm 0.1}$	$0.4^{ \pm 0.05}$	$4.2^{ \pm 0.1}$	$10.2^{ \pm 0.1}$				

Reel structure and Dimensions

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y．com．tw

Dimensions List		（Unit：mm）	
a	b	c	d
330	$17.5^{ \pm 1.5}$	$100^{ \pm 1.0}$	$13^{ \pm 0.5}$
e	f	g	
$23^{ \pm 1.0}$	$2.0^{ \pm 0.5}$	$2.0^{ \pm 0.5}$	

Direction of product insertion

［Packing ： $1000 \mathrm{pcs} /$ reel］

\square Important Notices

－The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights． SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP＇s devices．
－Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device． SHARP reserves the right to make changes in the specifications，characteristics，data，materials， structure，and other contents described herein at any time without notice in order to improve design or reliability．Manufacturing locations are also subject to change without notice．
－Observe the following points when using any devices in this publication．SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions：
（i）The devices in this publication are designed for use in general electronic equipment designs such as：
－－－Personal computers
－－－Office automation equipment
－－－Telecommunication equipment［terminal］
－－－Test and measurement equipment
－－－Industrial control
－－－Audio visual equipment
－－－Consumer electronics
（ii）Measures such as fail－safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection
with equipment that requires higher reliability such as：
－－－Transportation control and safety equipment（i．e．， aircraft，trains，automobiles，etc．）
－－－Traffic signals
－－－Gas leakage sensor breakers
－－－Alarm equipment
－－－Various safety devices，etc．
（iii）SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as：
－－－Space applications
－－－Telecommunication equipment［trunk lines］
－－－Nuclear power control equipment
－－－Medical and other life support equipment（e．g．， scuba）．
－If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan，it is necessary to obtain approval to export such SHARP devices．
－This publication is the proprietary product of SHARP and is copyrighted，with all rights reserved．Under the copyright laws，no part of this publication may be reproduced or transmitted in any form or by any means，electronic or mechanical，for any purpose，in whole or in part，without the express written permission of SHARP．Express written permission is also required before any use of this publication may be made by a third party．
－Contact and consult with a SHARP representative if there are any questions about the contents of this publication．

[^2]
[^0]: ＊7 It shall connect a by－pass capacitor of $0.01 \mu \mathrm{~F}$ or more between V_{CC}（pin（8））and GND（pin（7））near the device，when it measures the transfer characteristics and the output side characteristics
 ＊8 $\mathrm{I}_{\mathrm{FLH}}$ represents forward current when output goes from＂Low＂to＂High＂＊9 O_{2} output terminal is set open

[^1]: 勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

 Http：／／www． 100 y．com．tw

[^2]: Http：／／www．100y．com．tw

