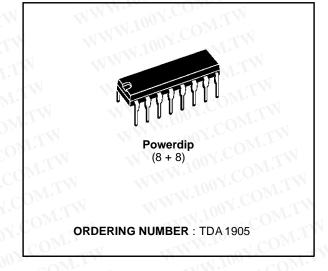
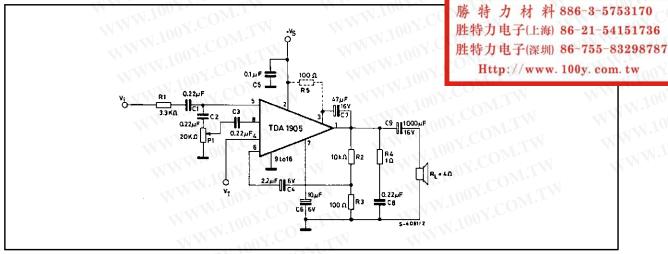


5W AUDIO AMPLIFIER WITH MUTING

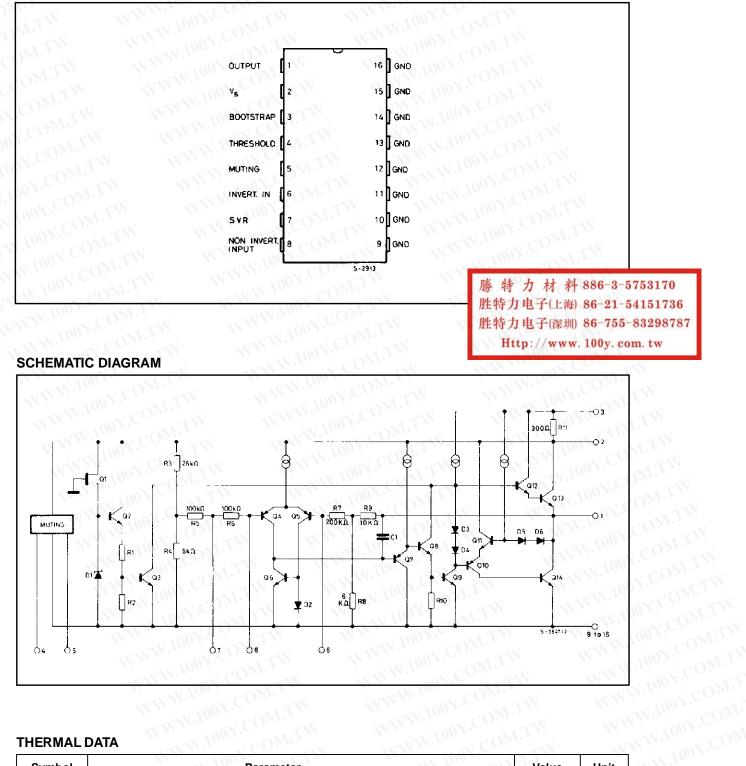

DESCRIPTION

The TDA1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets:

- muting facility
- protection against chip over temperature
- very low noise
- high supply voltage rejection
- low "switch-on" noise
- voltage range 4V to 30V


The TDA 1905 is assembled in a new plastic package, the POWERDIP, that offers the same assembly ease, space and cost saving of a normal dual in-line package but with a power dissipation of up to 6W and a thermal resistance of 15° C/W (junction to pins).

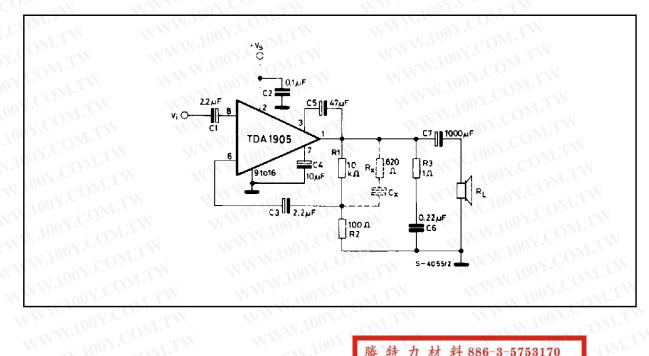
ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
Vs	Supply voltage	30	V
lo	Output peak current (non repetitive)	3	Α
lo	Output peak current (repetitive)	2.5	A
Vi	Input voltage	0 to + V _s	V
Vi	Differential input voltage	± 7	V
V ₁₁ 🔨	Muting thresold voltage	Vs	V
P _{tot}	Power dissipation at T _{amb} = 80°C	1	W
	$T_{case} = 60^{\circ}C$	6	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

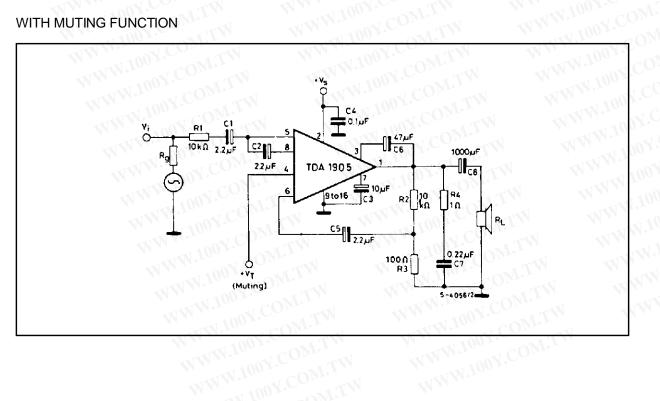
APPLICATION CIRCUIT

100Y.COM.TW

THERMAL DATA


Symbol	Parameter	AWW.100 N.CO	Value	Unit
R _{th-j-case}	Thermal resistance junction-pins	max	15	°C/W
R _{th-j-amb}	Thermal resistance junction-ambient	max	70	°C/M

WW.100Y.COM


TEST CIRCUITS:

WITHOUT MUTING

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 W.100X.COM.TW Http://www. 100y. com. tw

WITH MUTING FUNCTION

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T_{amb} = 25 °C, R_{th} (heatsink) = 20 °C/W, unless otherwisw specified)

100Y.COM.TW

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage	COMTA WAA	4	T.Mon	30	V
Vo	Quiescent output voltage	$ \begin{array}{l} V_s = 4V \\ V_s = 14V \\ V_s = 30V \end{array} $	1.6 6.7 14.4	2.1 7.2 15.5	2.5 7.8 16.8	V
l _d	Quiescent drain current	$ \begin{array}{l} V_s = 4V \\ V_s = 14V \\ V_s = 30V \end{array} $	NW.100	15 17 21	35	mA
V _{CE sat}	Output stage saturation voltage	$I_{C} = 1A$ $I_{C} = 2A$	WWW.	0.5 1	0 ^{M.TV} COM.T	V
Po	Output power	$ \begin{array}{ll} d = 10\% & f = 1 KHz \\ V_{s} = 9V & R_{L} = 4\Omega \; (^{*}) \\ V_{s} = 14V & R_{L} = 4\Omega \\ V_{s} = 18V & R_{L} = 8\Omega \\ V_{s} = 24V & R_{L} = 16\Omega \end{array} $	2.2 5 5 4.5	2.5 5.5 5.5 5.3	.COM. V.COM	W
d	Harmonic distortion		A A	0.1 0.1 0.1 0.1	00X.CC 100X.C 1.100X.C 1.100X.C 1.100X.C 1.100X.C	%
Vi	Input sensitivity	$ \begin{array}{ll} f = 1 KHz & & \\ V_s = 9 V & R_L = 4 \Omega & P_o = 2.5 W \\ V_s = 14 V & R_L = 4 \Omega & P_o = 5.5 W \\ V_s = 18 V & R_L = 8 \Omega & P_o = 5.5 W \\ V_s = 24 V & R_L = 16 \Omega & P_o = 5.3 W \end{array} $	TW I.TW M.TW	37 49 73 100	NWN.10	mV
Vi	Input saturation voltage (rms)	$V_{s} = 9V$ $V_{s} = 14V$ $V_{s} = 18V$ $V_{s} = 24V$	0.8 1.3 1.8 2.4	N	M.M.M.	VO
Ri	Input resistance (pin 8)	f = 1KHz	60	100	W	KΩ
l _d	Drain current	$ \begin{array}{ll} f = 1 KHz & & \\ V_s = 9 V & R_L = 4 \Omega & P_o = 2.5 W \\ V_s = 14 V & R_L = 4 \Omega & P_o = 5.5 W \\ V_s = 18 V & R_L = 8 \Omega & P_o = 5.5 W \\ V_s = 24 V & R_L = 16 \Omega & P_o = 5.3 W \end{array} $	N.CON	380 550 410 295	4	mA
η	Efficiency	$ \begin{array}{l} f = 1 K Hz \\ V_s = 9 V \\ V_s = 14 V \\ V_s = 14 V \\ R_L = 4 \Omega \\ R_L = 4 \Omega \\ P_o = 5.5 W \\ P_o = 5.5 W \\ V_s = 24 V \\ R_L = 16 \Omega \\ P_o = 5.3 W \end{array} $	100X.C 1.100X.C 1.100X.C	73 71 74 75	LM M	%

WW.100Y.COM.TW

57

SGS-THOMSON MICADELECTRONICS

(*) With an external resistor of 100Ω between pin 3 and +V_s. WWW.100Y.COM.TW WWW.100Y.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W.100Y.COM

ELECTRICAL CHARACTERISTICS (continued)

100Y.COM.TW

Symbol	Parameter	COM- Te	est conditions	Min.	Тур.	Max.	Uni
BW	Small signal bandwidth (-3dB)	V _s = 14V	$R_L = 4\Omega$ $P_o = 1W$	1001.	10 to 40,00	00	Hz
Gv	Voltage gain (open loop)	V _s = 14V f = 1KHz	WW WW	N.100Y	75	L.M.	dB
Gv	Voltage gain (closed loop)	V _s = 14V f = 1KHz	$R_L = 4\Omega$ $P_o = 1W$	39.5	40	40.5	dB
en	Total input noise	100Y.CC	$\begin{array}{l} R_{g}=50\Omega\\ R_{g}=1K\Omega\\ R_{g}=10K\Omega \end{array} \tag{\circ}$	WW.I	1.2 1.3 1.5	4.0	μV
100Y.C	OM.TW WY	NN.100X.	$ \begin{array}{l} R_{g} = 50\Omega \\ R_{g} = 1 K\Omega \\ R_{g} = 10 K\Omega \end{array} (^{\circ\circ}) $	WWW WWW	2.0 2.0 2.2	6.0	μV
S/N	Signal to noise ratio	$V_{s} = 14V$ $P_{o} = 5.5W$ $R_{L} = 4\Omega$	$\begin{array}{l} R_{g} = 10K\Omega \\ R_{g} = 0 \end{array} \qquad (^{\circ})$	WW	90 92	N.CON	dB
	Y.COM.TW	NL = 452	$ \begin{array}{l} R_{g} = 10K\Omega \\ R_{g} = 0 \end{array} \qquad (^{\circ\circ}) \end{array} $	N N	87 87	0Y.CC	dB
SVR	Supply voltage rejection	$V_{s} = 18V$ fripple = 100 Vripple = 0.5		40	50	100X.C	dB
T _{sd}	Thermal shut-down case temperatura (*)	WW	$P_{tot} = 2.5W$	N N	115	W.1007	°C

WWW.10

MUTING FUNCTION

/Toff	Muting-off threshold voltage (pin 4)	WWW.100Y.C	1.9	-	4.7	100V.C	WT.MO
/T _{ON}	Muting-on threshold	WWW.100X	0	s 1	1.3	V	COM.TW
voltage (pin 4)	voltage (pin 4)	TW WW.100	6.2		Vs	W.100,	LCOM.1
R ₅ Input-resistance (pin 5)	Input-resistance (pin 5)	Muting off	80	200		KΩ	V.COM.
	WWW.100X.CC	Muting on	NON.COM	10	30	Ω	NOY.COM
R ₄	Input resistance (pin 4)	MWW WWW.	150	WT.		KΩ	LOOY.CON
A _T	Muting attenuation	$R_g + R_1 = 10K\Omega$	50	60		dB	Loov.CO

•) Filter with noise bandwidth: 22 Hz to 22 KHz. WW.100

> 特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

.100Y.COM.TW

WWW.

100Y.COM.T

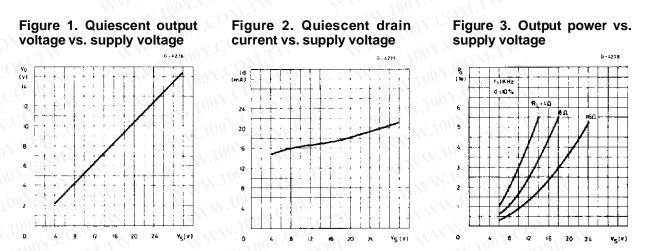


Figure 4. Distortion vs. output power ($R_L = 16\Omega$)

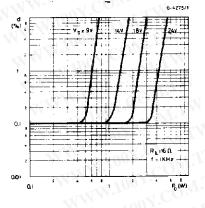


Figure 5. Distortion vs. output power ($R_L = 8\Omega$)

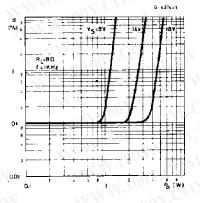


Figure 6. Distortion vs. output power ($R_L = 4\Omega$)

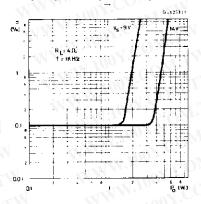


Figure 7. Distortion vs. frequency ($R_L = 16\Omega$)

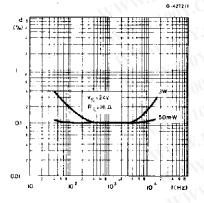
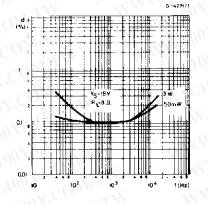
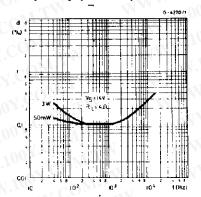



Figure 8. Distortion vs. frequency ($R_L = 8\Omega$)



SGS-THOMSON

MICROELECTRU

47/

Figure 9. Distortion vs. frequency ($R_L = 4\Omega$)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw Figure 10. Open loop frequency response

100Y.COM.T

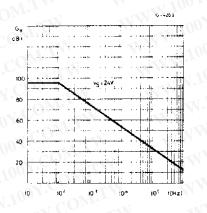


Figure 11. Output power vs. input voltage

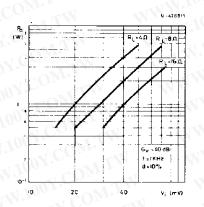


Figure 12. Value of capacitor Cx vs. bandwidth (BW) and gain (Gv)

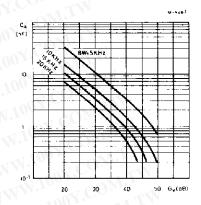


Figure 13. Supply voltage rejection vs. voltage gain (ref. to the Muting circuit)

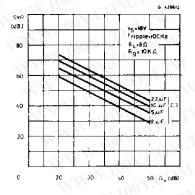


Figure 14. Supply voltage reection vs. source resistance

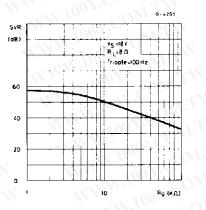
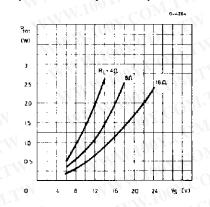
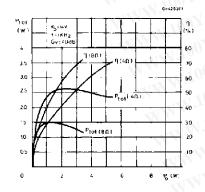
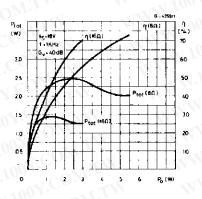
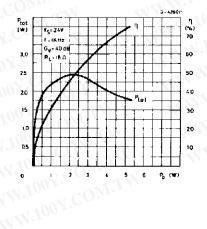


Figure 15. Max power dissipation vs. supply voltage (sine wave operation)


Figure 16. Power dissipation and efficiency vs. output power

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw Figure 17. Power dissipation and efficiency vs. output power

SGS-THOMSON MIGROELECTRONICS Figure 18. Power dissipation and efficiency vs. output power

APPLICATION INFORMATION

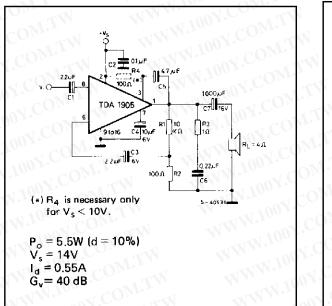
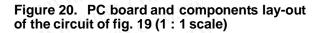



Figure 19. Application circuit without muting

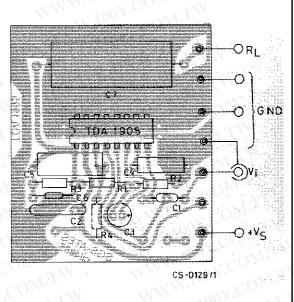
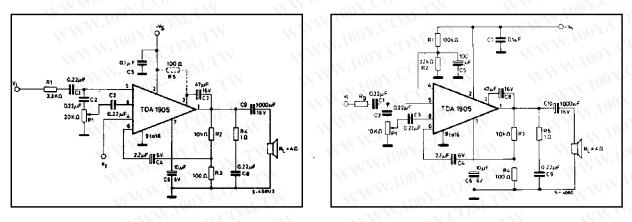
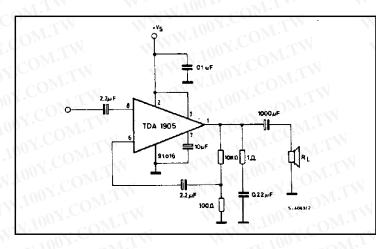



Figure 21. Application circuit with muting

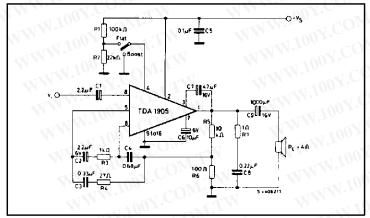
Figure 22. Delayed muting circuit

51

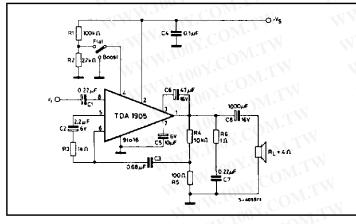
SGS-THOMSON

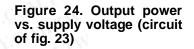

MICROFFER

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


TDA1905

APPLICATION INFORMATION (continued)


Figure 23. Low-cost application circuit without bootstrap.



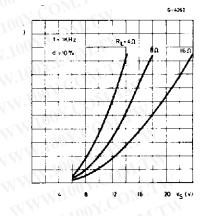

Figure 25. Two position DC tone control using change of pin 5 resistance (muting function)

Figure 27. Bass Bomb tone control using change of pin 5 resistance (muting function)

Figure 26. Frequency response of the circuit of fig. 25

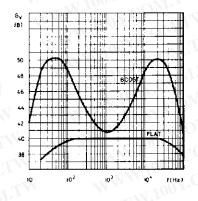
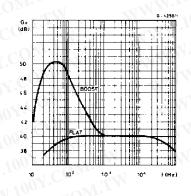
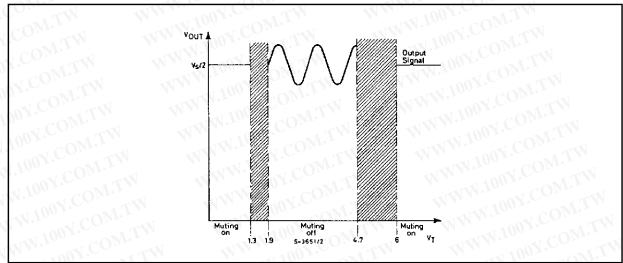



Figure 28. Frequency response of the circuit of fig. 27

SGS-THOMSON

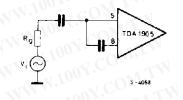

MICROE

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

MUTING FUNCTION

The output signal can be inhibited applying a DC voltage VT to pin 4, as shown in fig. 29

Figure 29



The input resistance at pin 5 depends on the threshold voltage V_T at pin 4 and is typically :

$R_5 = 200 \text{ K}\Omega$	$@ 1.9V \le V_T \le 4.7V$	muting-off
$R5 = 10 \Omega$		muting-on

Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression:

SGS-THOMSON

$$A_{T} = \frac{V_{i}}{V_{8}} = \frac{R_{g} + (\frac{R_{8} \cdot R_{5}}{R_{8} + 5})}{(\frac{R_{8} \cdot R_{5}}{R_{8} + R_{5}})}$$

where R8 \cong 100 K Ω

- during switching at the input stages.

- during the receiver tuning.

The variable impedance capability at pin 5 can be useful in many applications and two examples are shown in fig. 25 and 27, where it has been used to change the feedback network, obtaining 2 different frequency responses.

Considering $R_g = 10 \text{ K}\Omega$ the attenuation in the muting-on condition is typically $A_T = 60 \text{ dB}$. In the muting-off condition, the attenuation is very low, typically 1.2 dB.

A very low current is necessary to drive the threshold voltage V_T because the input resistance at pin 4 is greater than 150 K Ω . The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example:

 in switch-on condition, to avoid preamplifier power-on transients (see fig. 22)

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 21. When the supply voltage V_s is less than 10V, a 100 Ω resistor must be connected between pin 2 and pin 3 in order to obtain the maximum output power.

WWW.100Y.COM. Different values can be used. The following table can help the designer.

Component	Raccom. value	. Purpose	Larger than recommended value	Smaller than recommended value	Allowe	d range Max.
R _g + R ₁	10KΩ	Input signal imped. for muting operation	Increase of the attenuation in muting-on condition. Decrease of the input sensitivity.	Decrease of the attenu- ation in muting on condition.		
R ₂	10ΚΩ	Feedback resistors	Increase of gain.	Decrease of gain. Increase quiescent current.	9 R ₃	LM
R ₃	100Ω		Decrease of gain.	Increase of gain.	v.col	1KΩ
R ₄	1ΚΩ	Frequency stability	Danger of oscillation at high frequencies with inductive loads.	N WWW.10	ox.CC	OM.T
R ₅	100Ω	Increase of the output swing with low supply voltage.	WW.100X.COM	IM MMM M MMM	47	330
P ₁	20ΚΩ	Volume potentiometer	Increase of the switch-on noise.	Decrease of the input impedance and of the input level.	10ΚΩ	100ΚΩ
C ₁ C ₂ C ₃	0.22µF	Input DC decoupling.	Higher cost lower noise.	Higher low frequency cutoff. Higher noise.	WWN.	100X.0 100X.0
C4	2.2µF	Inverting input DC decoupling.	Increase of the switch- on noise.	Higher low frequency cutoff.	0.1µF	W.100
C ₅	0.1µF	Supply voltage bypass.	WWW.100	Danger of oscillations.	W	1W.10
C ₆	10µF	Ripple rejection	Increase of SVR increase of the switch-on time	Degradation of SVR	2.2µF	100µF
C7	47μF	Bootstrap.	TA WAY	Increase of the distortion at low frequency.	10µF	100µF
C ₈	0.22μF	Frequency stability.	MITH WW	Danger of oscillation.		
C ₉	1000µF	Output DC decoupling.	OM.TW W	Higher low frequency cutoff.	W	44

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

- 1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the Tj cannot be higher than 150 °C.
- 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to 150 °C, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 32 shows this dissipable power as a function of ambient temperature for different thermal resistance.

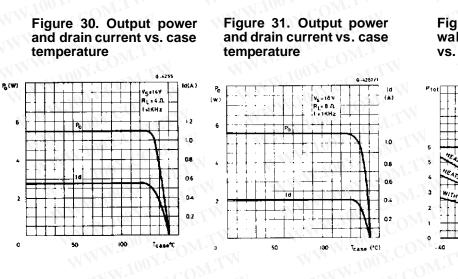
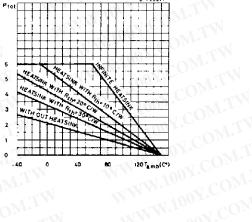
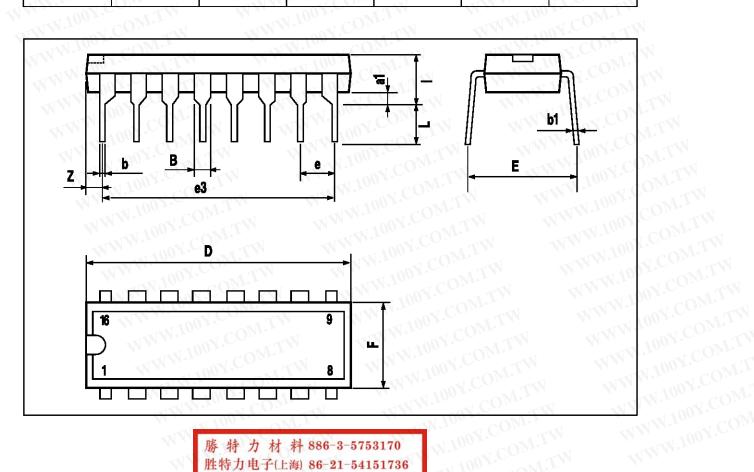



Figure 32. Maximum allowable power dissipation vs. ambient temperature

WW.100Y.COM.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

MOUNTING INSTRUCTION : See TDA1904

DIM.	WWW	mm	V V	1002.0	inch	
W	MIN.	TYP.	MAX. 🔨	MIN.	TYP.	MAX
a1	0.51	ONY.COM	WT	0.020	WTM.	
В	0.85	TOT COM	1.40	0.033	N.COM	0.055
ONb	WW	0.50	TW.	WWW.10	0.020	V
0 b1	0.38	W.Ine. CC	0.50	0.015	ON.COM	0.020
CD	ite la	W.Inov.C	20.0	WWW.	ON.COM.	0.787
CENC		8.80	COM.	WWW	0.346	WT
eoM		2.54	COMPT	WW	0.100	Wm
e3 ()		17.78	COM.1	N IN	0.700	N.
⁰⁰ F co	N.I.W	WW.100	7.10		WW.IOW.CC	0.280
1007.00	M.TV	1.WW.10	5.10		WW.100 XC	0.201
N.102Y.	OM.TW	3.30	DUT.COM.		0.130	CO _{W.1}
Z	WI.Mo	W	1.27	II.	N.100 .	0.050

100Y.COM.TW

nd die Issie Zan van die eine einen eine	
胜特力电子(上海) 86-21-54151736	
胜特力电子(深圳) 86-755-83298787	
Http://www.100y.com.tw	

WWW