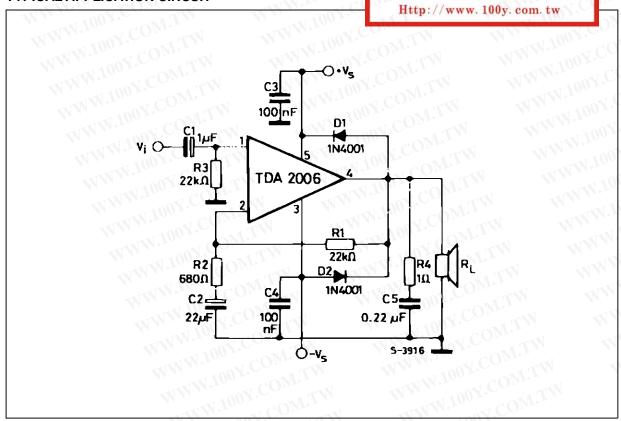
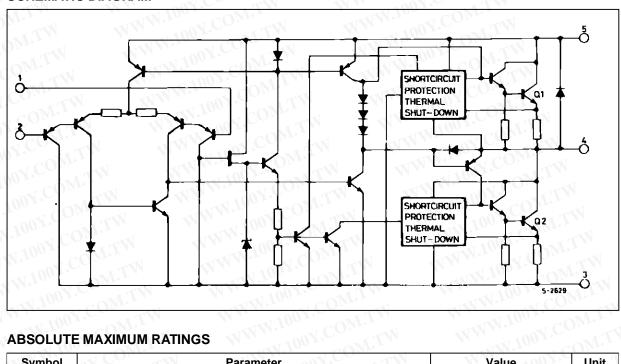


12W AUDIO AMPLIFIER

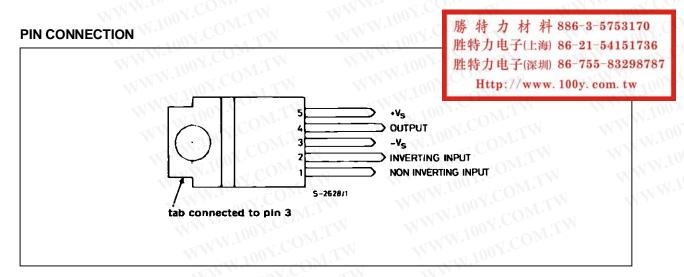

DESCRIPTION

The TDA2006 is a monolithic integrated circuit in Pentawatt package, intended for use as a low frequency class "AB" amplifier. At ± 12 V, d = 10 % typically it provides 12W output power on a 4Ω load and 8W on a 8Ω . The TDA2006 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shutdown system is also included. The TDA2006 is pin to pin equivalent to the TDA2030.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

TYPICAL APPLICATION CIRCUIT

May 1995 1/12


SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	± 15	٧
V_{i}	Input Voltage	Vs	CO
Vi	Differential Input Voltage	± 12	V
lo	Output Peak Current (internaly limited)	3	Α
Ptot	Power Dissipation at T _{case} = 90 °C	20	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C

olg, j	TIOOY.CONT.TV	MM 1007.		W.100x.
THERMAL	DATA			
Symbol	Paramet	er	Value	Unit
R _{th (j-c)}	Thermal Resistance Junction-case	Max	3	°C/W

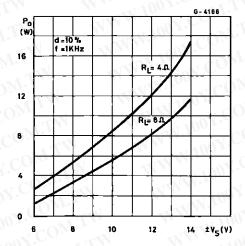
ELECTRICAL CHARACTERISTICS

(refer to the test circuit; $V_S = \pm 12V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	O.N. M.M. M. M. M. M. Too. O. C.	± 6	TW	± 15	V
ld	Quiescent Drain Current	V _s = ± 15V	CO_{N_I}	40	80	mA
l _b	Input Bias Current	V _s = ± 15V	CO	0.2	3	μΑ
Vos	Input Offset Voltage	V _s = ± 15V	S CC	± 8	κN	mV
los	Input Offset Current	V _s = ± 15V	- × 7 C	± 80		nA
Vos	Output Offset Voltage	V _s = ± 15V	JU 1.	± 10	± 100	mV
Po	Output Power	$d=10\%, f=1kHz$ $R_L=4\Omega$ $R_L=8\Omega$	6	12 8	M.TV	W
d	Distortion	$P_{o} = 0.1 \text{ to } 8W, R_{L} = 4\Omega, f = 1 \text{kHz} \\ P_{o} = 0.1 \text{ to } 4W, R_{L} = 8\Omega, f = 1 \text{kHz}$	V.100	0.2 0.1	M.T	% %
Vi	Input Sensitivity	$\begin{aligned} P_o &= 10W, R_L = 4\Omega, f = 1 \text{kHz} \\ P_o &= 6W, R_L = 8\Omega, f = 1 \text{kHz} \end{aligned}$	W.	200 220	COM	mV mV
В	Frequency Response (- 3dB)	$P_0 = 8W, R_L = 4\Omega$	WY .	20Hz to	100kHz	z
Ri	Input Resistance (pin 1)	f = 1kHz	0.5	5		МΩ
Gv	Voltage Gain (open loop)	f = 1kHz	MAN	75	N.C.	dB
G_{v}	Voltage Gain (closed loop)	f = 1kHz	29.5	30	30.5	dB
en	Input Noise Voltage	B (– 3dB) = 22Hz to 22kHz, $R_L = 4\Omega$	W	3	10	μV
i _N	Input Noise Current	B (– 3dB) = 22Hz to 22kHz, $R_L = 4\Omega$	W	80	200	pА
SVR	Supply Voltage Rejection	$R_L = 4\Omega$, $R_g = 22k\Omega$, $f_{ripple} = 100Hz$ (*)	40 <	50	×1 100	dB
la	Drain Current	$\begin{aligned} P_o &= 12W, R_L = 4\Omega \\ P_o &= 8W, R_L = 8\Omega \end{aligned}$		850 500	N.10	mA mA
Tj	Thermal Shutdown Junction Temperature	WWW.100Y.COM.TW		N	145) °C

WW.100Y.COM.TW

WWW.100Y.C


WWW.100Y.COM.TW

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.COM.TW

^(*) Referring to Figure 15, single supply.

Figure 1: Output Power versus Supply Voltage

Distortion versus Frequency Figure 3:

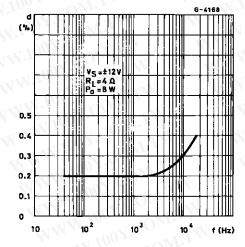


Figure 5: Sensitivity versus Output Power

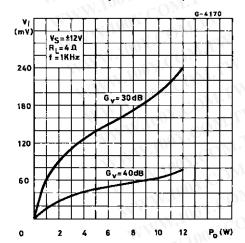
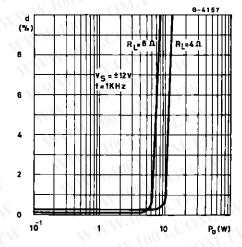



Figure 2: Distortion versus Output Power

Distortion versus Frequency Figure 4:

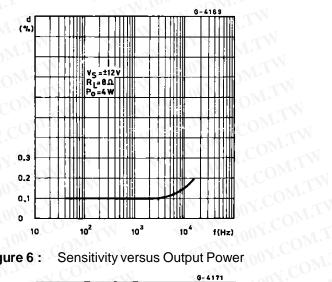
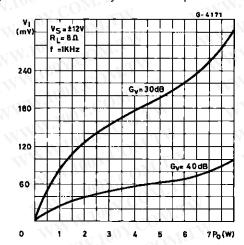



Figure 6:

力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Figure 7: Frequency Response with different values of the rolloff Capacitor C8 (see Figure 13)

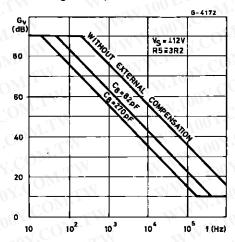


Figure 9: Quiescent Current versus Supply Voltage

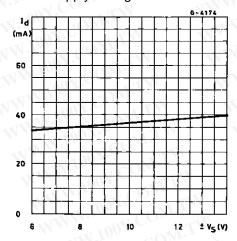


Figure 11: Power Dissipation and Efficiency versus Output Power

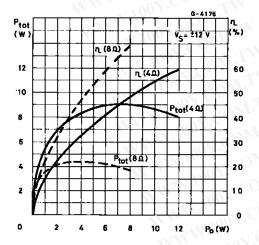
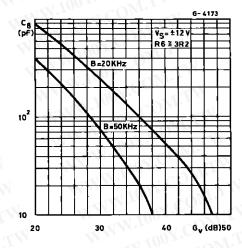



Figure 8: Value of C8 versus Voltage Gain for different Bandwidths (see Figure 13)

Figure 10 : Supply Voltage Rejection versus Voltage Gain

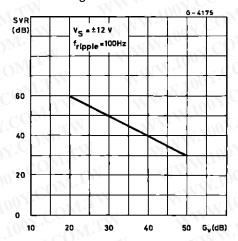


Figure 12: Maximum Power Dissipation versus Supply Voltage (sine wave operation)

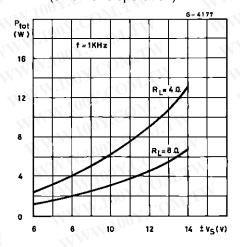


Figure 13: Application Circuit with Spilt Power Supply

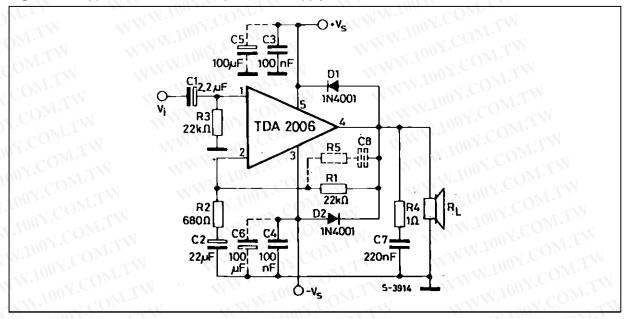
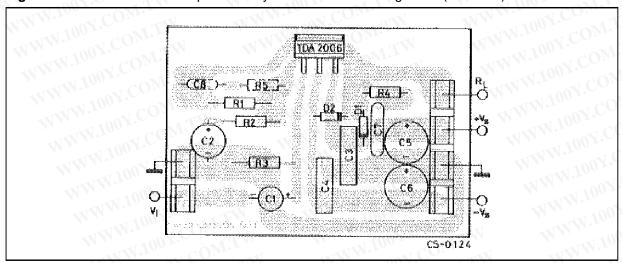



Figure 14: P.C. Board and Components Layout of the Circuit of Figure 13 (1:1 scale)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Figure 15: Application Circuit with Single Power Supply

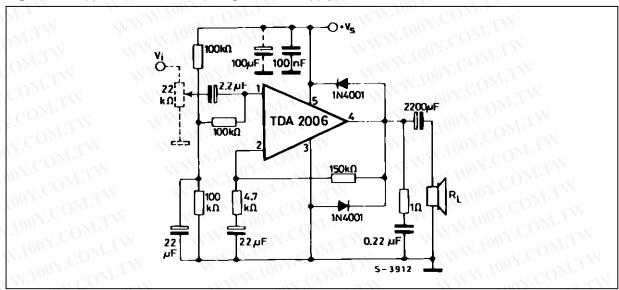
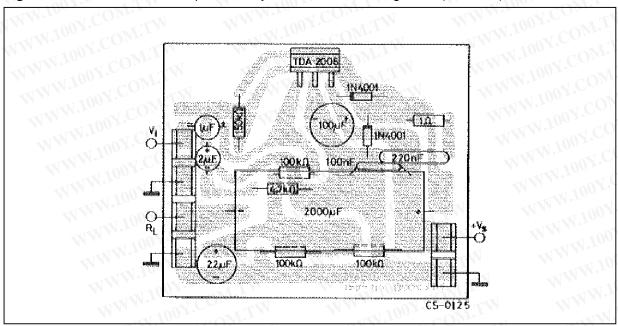



Figure 16: P.C. Board and Components Layout of the Circuit of Figure 15 (1:1 scale)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw Http://www. 100y. com. tw

OM. T. COM.

0.1μF IN 4001 1N4001 RL=8Ω $- \blacksquare$ TDA 2006 TDA 2006 22kΩ 22 kΩ 22 kΩ 22 µF IN4001 1N4001 ZZkΩ 680 U عبر O.22 ہ 68C A 5-4316

Figure 17: Bridge Amplifier Configuration with Split Power Supply ($P_0 = 24W$, $V_S = \pm 12V$)

PRACTICAL CONSIDERATIONS

Printed Circuit Board

The layout shown in Figure 14 should be adopted by the designers. If different layout are used, the ground points of input 1 and input 2 must be well decoupled from ground of the output on which a rather high current flows.

Assembly Suggestion

No electrical isolation is needed between the pack-

age and the heat-sink with single supply voltage configuration.

Application Suggestion

The recommended values of the components are the ones shown on application circuits of Figure 13. Different values can be used. The table 1 can help the designers.

Table 1

Component	Recommanded Value	Purpose	Larger Than Recommanded Value	Smaller Than Recommanded Value
R ₁	22 kΩ	Closed Loop Gain Setting	Increase of Gain	Decrease of Gain (*)
R ₂	680 Ω	Closed Loop Gain Setting	Decrease of Gain (*)	Increase of Gain
R ₃	22 kΩ	Non Inverting Input Biasing	Increase of Input Impedance	Decrease of Input Impedance
R ₄	ΝΝΝ.100	Frequency Stability	Danger of Oscillation at High Frequencies with Inductive Loads	IN MAN
R ₅	3 R ₂	Upper Frequency Cut-off	Poor High Frequencies Attenuation	Danger of Oscillation
C ₁	2.2 μF	Input DC Decoupling	WWW.100Y.CO	Increase of Low Frequencies Cut-off
C ₂	22 μF	Inverting Input DC Decoupling	MM.100X.C	Increase of Low Frequencies Cut-off
C ₃ C ₄	0.1 μF	Supply Voltage by Pass	M. 100x.	Danger of Oscillation
C ₅ C ₆	100 μF	Supply Voltage by Pass	WWW.	Danger of Oscillation
C ₇	0.22 μF	Frequency Stability	TWW.Ioo	Danger of Oscillation
C ₈	$\frac{1}{2\pi BR_1}$	Upper Frequency Cut-off	Lower Bandwidth	Larger Bandwidth
D ₁ D ₂	1N4001	To Protect the Device Agai	nst Output Voltage Spikes.	COMP.

^(*) Closed loop gain must be higher than 24dB.

SHORT CIRCUIT PROTECTION

The TDA2006 has an original circuit which limits the current of the output transistors. Figure 18 shows that the maximum output current is a function of the collector emitter voltage; hence the output transistors work within their safe operating area (Figure 19).

This function can therefore be considered as being peak power limiting rather than simple current limiting.

It reduces the possibility that the device gets damaged during an accidental short circuit from AC output to ground.

THERMAL SHUT DOWN

The presence of a thermal limiting circuit offers the following advantages:

- 1) an overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_i cannot be higher than 150°C.
- the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.

If for any reason, the junction temperature increases up to $150\,^{\circ}$ C, the thermal shutdown simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); Figure 22 shows the dissipable power as a function of ambient temperature for different thermal resistances.

Figure 18: Maximum Output Current versus Voltage V_{CE} (sat) accross each Output Transistor

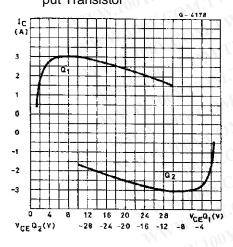


Figure 19: Safe Operating Area and Collector Characteristics of the Protected Power Transistor

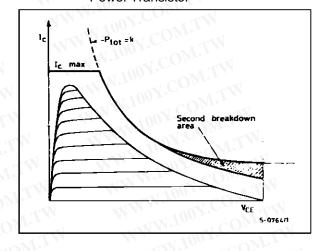


Figure 20 : Output Power and Drain Current versus Case Temlperature ($R_L = 4\Omega$)

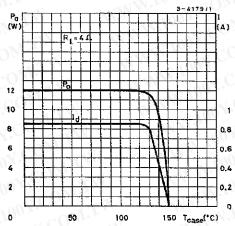


Figure 21: Output Power and Drain Current versus Case Temlperature ($R_L = 8\Omega$)

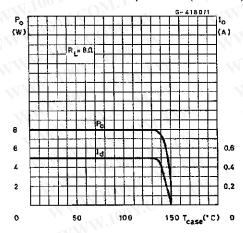
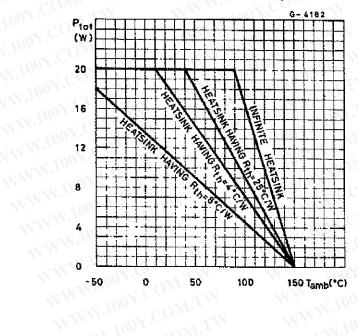
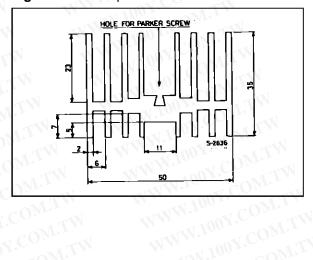



Figure 22: Maximum Allowable Power Dissipation versus Ambient Temperature



DIMENSION SUGGESTION

The following table shows the length of the heatsink in Figure 23 for several values of Ptot and Rth.

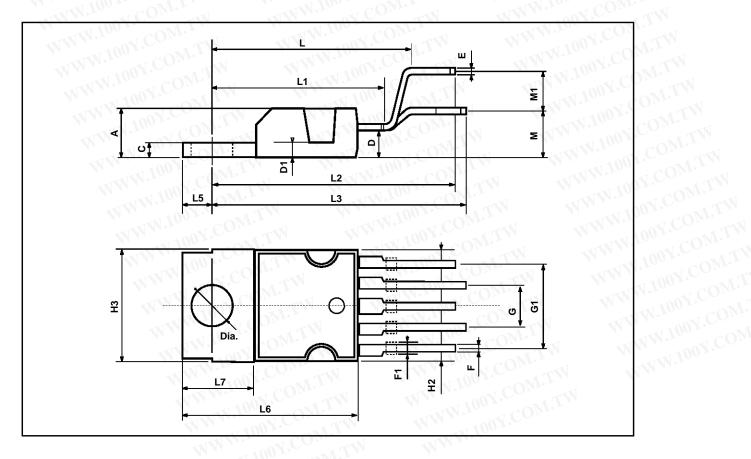

P _{tot} (W)	12	8	6
Lenght of Heatsink (mm)	60	40	30
R _{th} of Heatsink (°C/W)	4.2	6.2	8.3

Figure 23: Example of Heatsink

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw Http://www. 100y. com. tw

DIM.	mm		inch			
DIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	MM.	1007.	4.8	1100	· OM.TW	0.189
C		A COM	1.37	WWW.	V.Com	0.054
D	2.4	V.100 - COL	2.8	0.094	COM	0.110
D1	1.2	1007.	1.35	0.047	O. O. T.	0.053
OE	0.35	M. T. CO	0.55	0.014	on Con	0.022
oF.	0.8	W.100 - C	1.05	0.031	COM.	0.041
F1	1	1, 100 X	1.4	0.039	100 J.	0.055
G	a a	3.4	OH	0.126	0.134	0.142
G1		6.8	COM.	0.260	0.268	0.276
H2	TW	11007	10.4	N.	XI 100 1.	0.409
H3	10.05	WWW.	10.4	0.396	A CONT.CC	0.409
OU L COL	1.1	17.85	-1 COM.	-41	0.703	DIAT.
L1	WTD	15.75	DY.		0.620	OMIL
L2		21.4	ov.Co	W W	0.843	
L3	OM.,	22.5	COM.		0.886	CO_{Mr}
L5	2.6	W	00 3	0.102	, , , , , 100 ,	0.118
L6	15.1	WWW	15.8	0.594	1/1/1/1/100	0.622
L7	6		6.6	0.236	WW.I	0.260
M	TIME	4.5	X 100 Y.	M.T.	0.177	c01
M1	COM TY	4	TOOX.CC	WT	0.157	OON.
Dia	3.65	1	3.85	0.144		0.152

