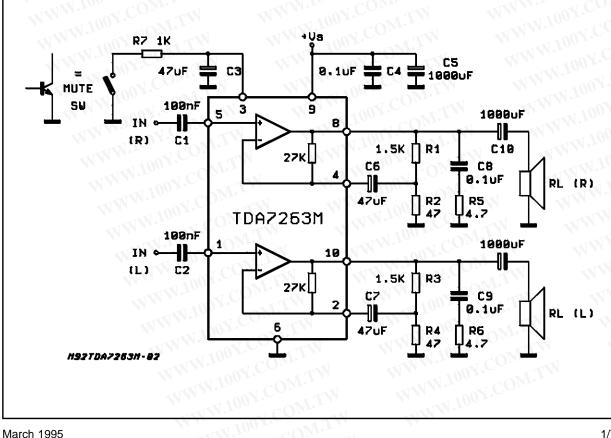


12 +12W STEREO AMPLIFIER WITH MUTING


- WIDE SUPPLY VOLTAGE RANGE
- HIGH OUTPUT POWER 12+12W @ V_S =28V, $R_L = 8\Omega$, THD=10%
- MUTE FACILITY (POP FREE) WITH LOW CONSUMPTION
- AC SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

The TDA7263M is class AB dual audio power amplifier assembled in the Multiwatt package, specially designed for high quality sound application as HI-FI music centers and stereo TV sets.

APPLICATION CIRCUIT

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	35	V
lo	Output Peak Current (repetitive f >20Hz)	2.5	A
lo	Output Peak Current (non repetitive, t = 100µs)	3.5	A
P _{tot}	Total Power Dissipation (T _{case} = 70°C)	30	W
Top	Operating Temperature Range	0 to 70	°C
T _{stg,Tj}	Storage & Junction Temperature	-40 to 150	°C

PIN CONNECTION (Top view)

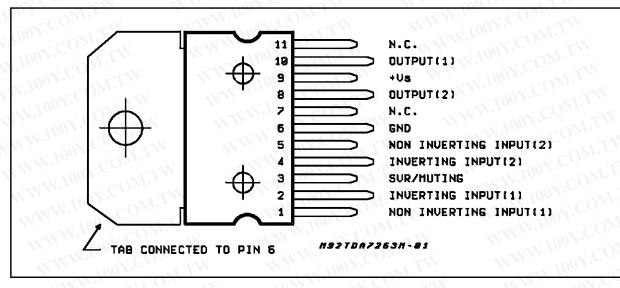
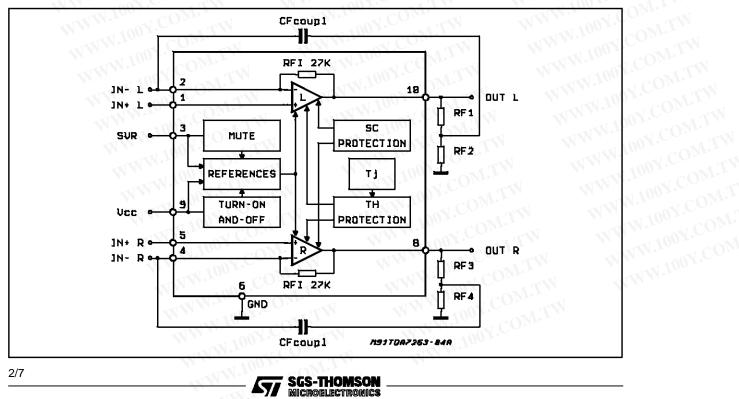
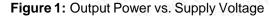
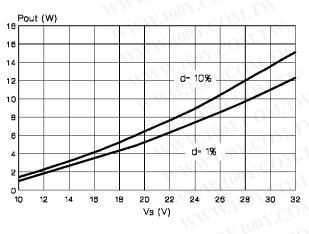
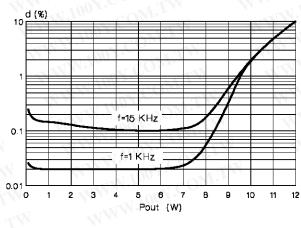



Figure 1: Block Diagram


THERMAL DATA


THERMAL D	ATA			
Symbol	Parameter	WW.100 L	Value	Unit
R _{th j-case}	Thermal resistance junction to case	Max	2.5	°C/W

ELECTRICAL CHARACTERISTICS (Refer to the stereo test and application circuit, $V_S = 28V$; $R_L = 8_{\Omega_1}$; $G_v = 30$ dB; f = 1KHz; $T_{amb} = 25$ °C unless otherwise specified.)


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Uni
Vs	Supply Voltage	WIN WIN	10	Mo	32	V
Vo	Quiescent Output Voltage	COM WWY	1005	13.5	NT.	V
lq	Total Quiescent Current	CONT.	N.105	70	95	mA
Po	Output Power (RMS)	d = 10% Tamb = 85°C d = 1%	10	12 9.5	M.L.	W W
d CO	Total Harmonic Distortion	$P_0 = 1W$, f = 1kHz f = 100Hz to 10KHz; $P_0 = 0.1$ to 8W	NW.Y	0.02	0.2 0.5	≪ %
СТ	Cross Talk	$R_S = 10K\Omega; f = 1KHz$		70		3 dB dB KΩ Hz KHz
1.100 1.	WW.	$R_{S} = 10K\Omega; f = 10KHz$	WWW	60	COM.	dB
Ri	Input Resistance	100 r. ONL'L'	100	200	CON	KΩ
fLoo	Low Frequency Roll-off (-3dB)	1007.001.179	AN AL	40		Hz
f _H	High Frequency Roll-off (-3dB)	N. LON. COM	VV	80	N.CO	КН
en	Total Input Noise Voltage	A Curve; Rs = 10KΩ		1.5	NC C	m∖
10	TAL MITH	$f = 22Hz$ to 22KHz; Rs = 10K Ω		3	10	μV
SVR	Supply Voltage Rejection (each channel)	$R_{S} = 10K\Omega; f = 100Hz; Vr = 0.5V$	45	60	1001.0	dB
Tj	Thermal Shutdown Junction Temperature	WWW.1001.COM.1		145	100 2	°C
MUTE FUN	ICTION	MW.10° CONT.		WIR	1.1	J.C
VTMUTE	Mute Threshold	W. 1001. ONL'LY	1	1.6	W.10	V
VT _{PLAY}	Play Threshold	The root of		4.5	11	V
ATTAM	Mute Attenuation	WWW. POW.COM	70	100	W.M.	dB
	Quiescent Current @ Mute	M.Ino COM.		7	10	mA

TYPICAL CHARACTERISTICS (referred to the typical Application Circuit, $V_S = 28V$, $R_L = 8\Omega$, unless otherwise specified)

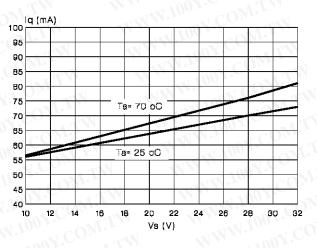
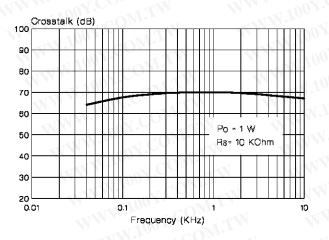


Figure 2: Distortion vs. Output Power

57



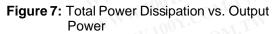

Figure 3: Quiescent Current vs. Supply Voltage

Figure 4: Supply Voltage Rejection vs. Frequency

Figure 5: Crosstalk vs. Frequency

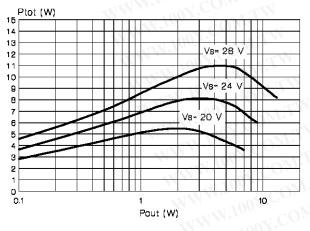
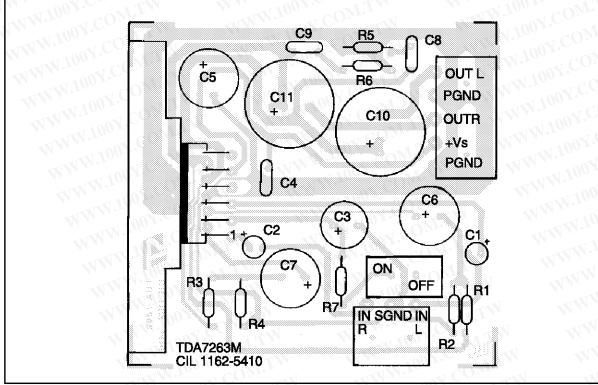



Figure 6: Output Attenuation & Quiescent Current vs. Vpin3

SGS-THOMSON Microelectronics 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TDA7263M


APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of figure 1. Different values can be used; the following table can help the designer.

Component	Recomm. Value	Purpose	Larger Than	Smaller Than	
R1 and R3	1.5KΩ	Close loop gain setting (*)	Increase of gain	Decrease of gain	
R2 and R4	47Ω	Close loop gain setting (*)	Decrease of gain	Increase of gain	
R5 and R6	4.7Ω	Frequency stability	Danger of oscillations	CONLI	
C1 and C2	100nF <	Input DC decoupling	Higher SVR	Higher low frequency cutoff	
C3	47μF	 Ripple Rejection Mute time constant 	Increase of the Switch-on time	- Degradation of SVR - Worse turn-off pop by mutin	
C4 (0)	100nF	Supply Voltage Bypass	WWW WWW	Danger of oscillations	
C5	1000μF	Supply Voltage Bypass	WWW.	TO NICONT	
C6 and C7	47μF	Feedback input DC decoupling	Increase of the Switch-on time	Decrease of the Switch-on time	
C8 and C9	0.1µF	Frequency stability	M	Danger of oscillations	
C10 and C11	1000μF	Output DC decoupling	WII'M WI	Higher low-frequency cut-off	

(*) Closed loop gain must be higher than 26dB

Figure 8: P. C. Board and Component Layout of the Application Circuit (1:1 scale).

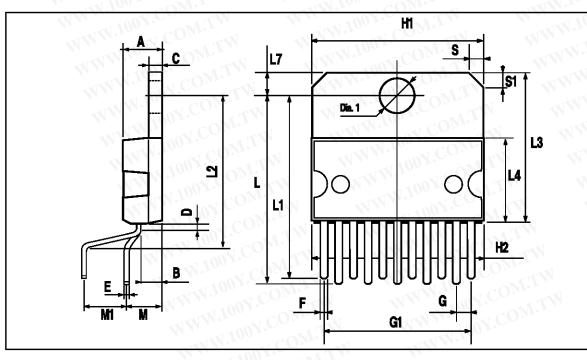
BUILT-IN PROTECTION SYSTEMS

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

- 1-an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
- 2-the heatsink can have a smaller factor of safety compared with that of a conventional

circuit. There is no device damage in the case of excessive junction temperature; all that happens is that P_O (and therefore P_{tot}) and I_O are reduced.


SHORT CIRCUIT (AC CONDITIONS)

The TDA7263M can withstand accidental short circuits across the speaker made by a wrong connection during normal play operation.

MULTIWATT11 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	ТҮР.	MAX
Α	N VI	1001. COM	5	W.100	COM.I.	0.19
В	WW.	100Y.C	2.65	W V. 100	T.M.TY	0.104
C	WW.	100Y.CO	1.6	WW	N.M.T	0.06
D D	WW	1.2.04	WTN	WWW	0.039	N.
COE	0.49	J.Va. IV	0.55	0.019	ONY.COM	0.02
CDM.1	0.88	WW.100	0.95	0.035	Los COM	0.03
G	1.57	1.7	1.83	0.062	0.067	0.07
G1	16.87	17 00	17.13	0.664	0.669	0.67
H1	19.6	WW 100	I.U. M.TY	0.772	100Y.C	M.TV
H2	WTD	WWW	20.2	N N	100%.0	0.79
Ly CO	21.5	WWW.	22.3	0.846	YOUL TOOY.	0.87
	21.4	WWW.	22.2	0.843	NWW.L	0.87
L2	17.4	WW	18.1	0.685	MWW.100	0.71
L3	17.25	17.5	17.75	0.679	0.689	0.69
L4	10.3	10.7	10.9	0.406	0.421	0.42
L7	2.65	MM	2.9	0.104	WWW TAN	0.11
М	4.1	4.3	4.5	0.161	0.169	0.17
M1	4.88	5.08	5.3	0.192	0.200	0.20
S	1.9		2.6	0.075	WW	0.10
S1	1.9		2.6	0.075	W.	0.10
Dia1	3.65	Tu	3.85	0.144		0.15

