INTEGRATED CIRCUITS

DATA SHEET

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TDA8351 DC-coupled vertical deflection circuit

Product specification Supersedes data of January 1995 File under Integrated Circuits, IC02

1999 Sep 27

DC-coupled vertical deflection circuit

TDA8351

FEATURES

- · Few external components
- Highly efficient fully DC-coupled vertical output bridge circuit
- · Vertical flyback switch
- Guard circuit
- · Protection against:
 - short-circuit of the output pins (7 and 4)
 - short-circuit of the output pins to V_P
- · Temperature protection
- · High EMC immunity because of common mode inputs
- · A guard signal in zoom mode.

GENERAL DESCRIPTION

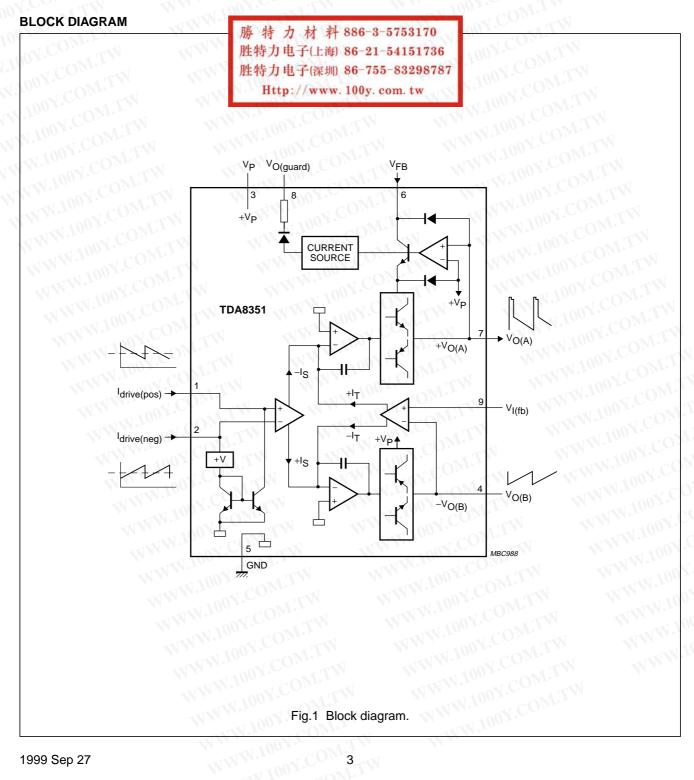
The TDA8351 is a power circuit for use in 90° and 110° colour deflection systems for field frequencies of 50 to 120 Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DC supply	OM. MAM. 10	OY.COM	V	11111	OY.CO	TW
V _P	supply voltage	OV.COM. TV	9	NAM	25	V
l _q	quiescent supply current	COM	dV.	30	- CO	mA
Vertical circuit	COMITY	Jon COM.	-XV	WWW	Too C.C.	DIVI
$I_{O(p-p)}$	output current (peak-to-peak value)	1.100 X.COM:	LAN .	-WWI	3	A
$I_{\text{diff}(p-p)}$	differential input current (peak-to-peak value)	W.100X.CO	T.T.M	600	N.100X	μА
$V_{\text{diff(p-p)}}$	differential input voltage (peak-to-peak value)	WW.1007.CC	MIW	1.5	1.8	VOM
Flyback switch	N. TOOY.COM	MANA TOOLS	VI.M		NW TO 1	10 Y.C.
I _M	peak output current	NAMA TOON	CONT.	N -	±1.5	Α
V_{FB}	flyback supply voltage	WWW.	COM.	ri ll	50	V
	M.100 1. COM.1	note 1	^COM.	- T	60	V
Thermal data (ii	n accordance with IEC 747-1)	M.100	COM	, I	WW	N.Too
T _{stg}	storage temperature	W.10	-55	11.2	+150	°C
T _{amb}	operating ambient temperature	WWW.1	-25	W.T.Y.	+75	°C
T _{vi}	virtual junction temperature	MM	107.0	TIT	150	°C

Note

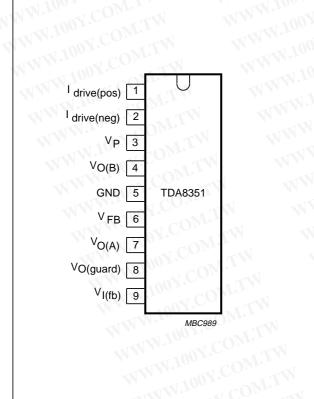

1. A flyback supply voltage of >50 V up to 60 V is allowed in application. A 220 nF capacitor in series with a 22 Ω resistor (depending on I_O and the inductance of the coil) has to be connected between pin 7 and ground. The decoupling capacitor of V_{FB} has to be connected between pin 6 and pin 3. This supply voltage line must have a resistance of 33 Ω (see application circuit Fig.6).

DC-coupled vertical deflection circuit

TDA8351

ORDERING INFORMATION

TYPE NUMBER	N 100 Y.C.	PACKAGE	
TYPE NUMBER	NAME	DESCRIPTION	VERSION
TDA8351	SIL9P	plastic single-in-line power package; 9 leads	SOT131-2



DC-coupled vertical deflection circuit

TDA8351

PINNING

SYMBOL PIN		DESCRIPTION		
I _{drive(pos)}	1	input power-stage (positive); includes I _{I(sb)} signal bias		
I _{drive(neg)}	2	input power-stage (negative); includes I _{I(sb)} signal bias		
V _P	N 3	operating supply voltage		
V _{O(B)}	4	output voltage B		
GND	5	ground		
V _{FB}	6	input flyback supply voltage		
V _{O(A)}	7	output voltage A		
V _{O(guard)}	8	guard output voltage		
V _{I(fb)}	9	input feedback voltage		

Metal block connected to substrate pin 5. Metal on back.

Fig.2 Pin configuration.

FUNCTIONAL DESCRIPTION

The vertical driver circuit is a bridge configuration. The deflection coil is connected between the output amplifiers, which are driven in opposite phase. An external resistor (R_M) connected in series with the deflection coil provides internal feedback information. The differential input circuit is voltage driven. The input circuit has been adapted to enable it to be used with the TDA9150, TDA9151B, TDA9160A, TDA9162, TDA8366 and TDA8376 which deliver symmetrical current signals. An external resistor (R_{CON}) connected between the differential input determines the output current through the deflection coil. The relationship between the differential input current and the output current is defined by: $I_{diff} \times R_{CON} = I_{coil} \times R_{M}$. The output current is adjustable from 0.5 A (p-p) to 3 A (p-p) by varying R_M. The maximum input differential voltage is 1.8 V. In the application it is recommended that $V_{diff} = 1.5 \text{ V (typ)}$. This is recommended because of the spread of input current and the spread in the value of R_{CON}.

The flyback voltage is determined by an additional supply voltage V_{FB} . The principle of operating with two supply voltages (class G) makes it possible to fix the supply voltage V_{P} optimum for the scan voltage and the second supply voltage V_{FB} optimum for the flyback voltage. Using this method, very high efficiency is achieved.

The supply voltage V_{FB} is almost totally available as flyback voltage across the coil, this being possible due to the absence of a decoupling capacitor (not necessary, due to the bridge configuration). Built-in protections are:

- thermal protection
- short-circuit protection of the output pins (pins 4 and 7)
- short-circuit protection of the output pins to V_P.

A guard circuit $V_{O(guard)}$ is provided. The guard circuit is activated at the following conditions:

- during flyback
- during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7) to V_P or ground
- · during open loop
- when the thermal protection is activated.

This signal can be used for blanking the picture tube screen.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

DC-coupled vertical deflection circuit

TDA8351

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
DC supply	MWW.100 COM. TW	MAN. TOON CO	TW	•	•
V _P	supply voltage	non-operating	Ou - TAN	40	V
	WW.100 1. COM.1	TWW.Inv	0 7	25	V
V_{FB}	flyback supply voltage	W.100 x	COANTI	50	V
	WW. TOOY. COM. TW	note 1	- OM.T	60	V
Vertical circuit	WWW. 100X.COM.TI	N NN 100	Y.COM!	L.W.	•
I _{O(p-p)}	output current (peak-to-peak value)	note 2	OXICOM	3	А
V _{O(A)}	output voltage (pin 7)	TH WWW.	UNICO .	52	V
	MWW.Ing. COM	note 1	OT.CO	62	V
Flyback switch	MIT TOWN CON	WWW.	Ing CC	MI	
I _M	peak output current	MILL	1.100 × C	±1.5	Α
Thermal data (ir	accordance with IEC 747-1)	DW.TW	W.100	CO_{M+r}	XXI
T _{stg}	storage temperature	William M.	-55	+150	°C
T _{amb}	operating ambient temperature	MIN	-25	+75	°C
T _{vj}	virtual junction temperature	CO. TIN W	-100	150	°C
R _{th vj-c}	resistance v _j -case	I.COM TWO	11/2	4	K/W
R _{th vj-a}	resistance v _j -ambient in free air	COM	WAN	40	K/W
t _{sc}	short-circuiting time	note 3		1 - C	hr

Notes

- 1. A flyback supply voltage of >50 V up to 60 V is allowed in application. A 220 nF capacitor in series with a 22 Ω resistor (depending on I_O and the inductance of the coil) has to be connected between pin 7 and ground. The decoupling capacitor of V_{FB} has to be connected between pin 6 and pin 3. This supply voltage line must have a resistance of 33 Ω (see application circuit Fig.6).
- 2. I_O maximum determined by current protection.
- 3. Up to $V_P = 18 \text{ V}$.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

DC-coupled vertical deflection circuit

TDA8351

CHARACTERISTICS

 V_P = 17.5 V; T_{amb} = 25 °C; V_{FB} = 45 V; f_i = 50 Hz; $I_{I(sb)}$ = 400 μ A; measured in test circuit of Fig.3; unless otherwise

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNI
DC supply	W. W. TOO Y. COL	V.I.A.	1.100	OM		
V _P	operating supply voltage	W.LM	9.0	CONTI	25	V
V _{FB}	flyback supply voltage	M.TW	V_{P}	T.MO	50	V
	TW WWW.	note 1	V_{P}	Y. COM.	60	V
I _P CO	supply current	no signal; no load	100	30	55	mA
Vertical ci	rcuit	COM	MM.	WY.COM.	W	
Vo	output voltage swing (scan)	I _{diff} = 0.6 mA (p-p); V _{diff} = 1.8 V (p-p); I _O = 3 A (p-p)	19.8	100X.CO	M.TW	V
LE	linearity error	I _O = 3 A (p-p); note 2	-01/11/11	100Y.C	3	%
	COM:1	$I_{O} = 50 \text{ mA (p-p)}; \text{ note 2}$		1 0V.	3	%
Vo	output voltage swing (flyback) $V_{O(A)} - V_{O(B)}$	I _{diff} = 0.3 mA; I _O = 1.5 A	- 444	39	COMIT	V
V_{DF}	forward voltage of the internal efficiency diode (V _{O(A)} – V _{FB})	$I_O = -1.5 \text{ A};$ $I_{\text{diff}} = 0.3 \text{ mA}$	- 1	N. 100	1.5	V
I _{os}	output offset current	$I_{diff} = 0;$ $I_{I(sb)} = 50 \text{ to } 500 \mu\text{A}$	-	NAM'IO	30	mA
V _{os}	offset voltage at the input of the feedback amplifier (V _{I(fb)} – V _{O(B)})	$I_{diff} = 0;$ $I_{I(sb)} = 50 \text{ to } 500 \mu\text{A}$		WWW.	18	mV
$\Delta V_{os}T$	output offset voltage as a function of temperature	I _{diff} = 0	LM _	-WWA	72	μV/k
V _{O(A)}	DC output voltage	I _{diff} = 0; note 3	TW	8.0	= 100X.	V
G _{vo}	open-loop voltage gain (V ₇₋₄ /V ₁₋₂)	notes 4 and 5	- ~~	80	14.	dB
	open loop voltage gain $(V_{7-4}/V_{9-4}; V_{1-2} = 0)$	note 4	MIN	80	VEN. 100	dB
V_R	voltage ratio V ₁₋₂ /V ₉₋₄	MM. 1001.C	-MIN	0	12 10	dB
f _{res}	frequency response (-3 dB)	open loop; note 6	O. T.	40	IIII	Hz
G _I	current gain (I _O /I _{diff})	WWW.	COM.	5000	MMM	100Y
ΔG _c T	current gain drift as a function of temperature	MMM.100	COM	.T.W	10-4	K
I _{I(sb)}	signal bias current	M MM 10	50	400	500	μΑ
I _{FB}	flyback supply current	during scan	OLY CO	TIM	100	μΑ
PSRR	power supply ripple rejection	note 7	-oxi.CO	80	- 111	dB
V _{I(DC)}	DC input voltage	WWW	Too C	2.7	- 3	V
V _{I(CM)}	common mode input voltage	$I_{I(sb)} = 0$	0	- DM.	1.6	V
I _{bias}	input bias current	$I_{I(sb)} = 0$	$\sqrt{100}$ Y.	0.1	0.5	μΑ
I _{O(CM)}	common mode output current	$\Delta I_{I(sb)} = 300 \mu\text{A (p-p)};$ $f_i = 50 \text{Hz}; I_{diff} = 0$	W.100Y	0.2	9 <u> </u>	mA

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

DC-coupled vertical deflection circuit

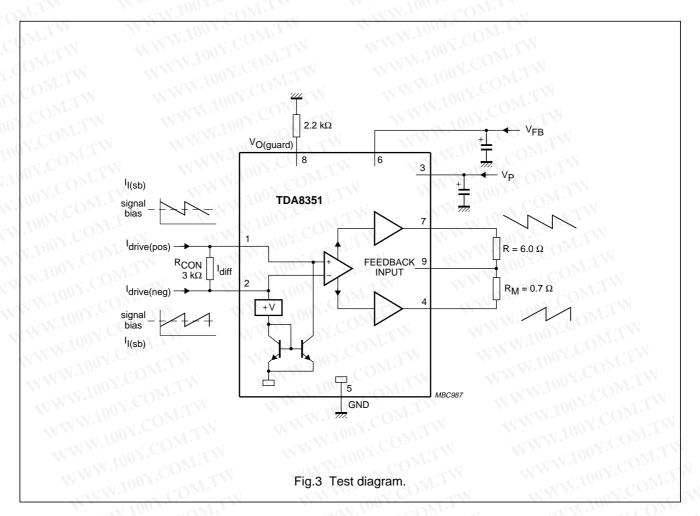
TDA8351

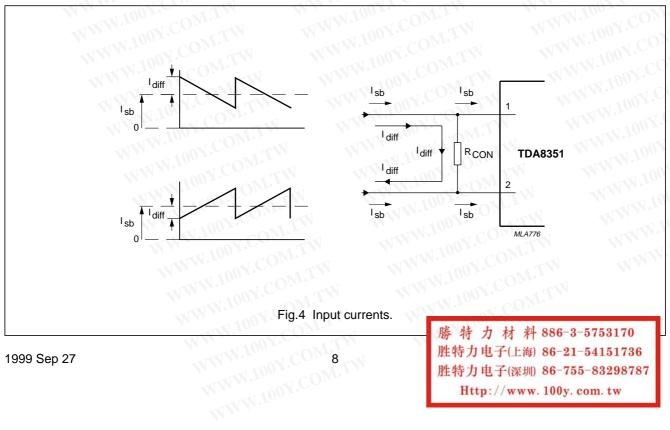
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Guard circ	uit WY 100Y.	VIII WWW.I		1.1	•	
lo	output current	not active; V _{O(guard)} = 0 V	100X'CO	MIN	50	μА
COM	N WWW.LOOV.C	active; V _{O(guard)} = 3.6 V	1 00 V.C	U- TW	2.5	mA
V _{O(guard)}	output voltage on pin 8	$I_0 = 100 \mu\text{A}$	4.6	OM.	5.5	V
N.COM	allowable voltage on pin 8	maximum leakage current = 10 μA;	41.100 Y	COM	40	V

Notes

- 1. A flyback supply voltage of >50 V up to 60 V is allowed in application. A 220 nF capacitor in series with a 22 Ω resistor (dependent on I_O and the inductance of the coil) has to be connected between pin 7 and ground. The decoupling capacitor of V_{FB} has to be connected between pin 6 and pin 3. This supply voltage line must have a resistance of 33 Ω (see application circuit Fig.6).
- 2. The linearity error is measured without S-correction and based on the same measurement principle as performed on the screen. The measuring method is as follows:

Divide the output signal $I_4 - I_7$ (V_{RM}) into 22 equal parts ranging from 1 to 22 inclusive. Measure the value of two succeeding parts called one block starting with part 2 and 3 (block 1) and ending with part 20 and 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given below:

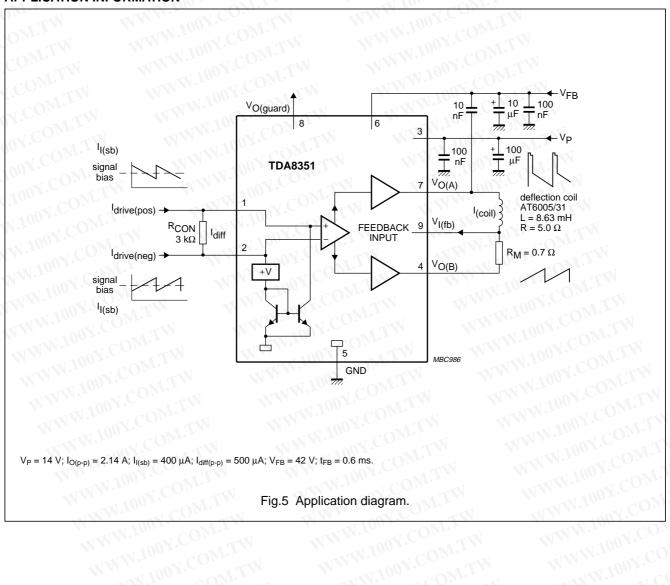

$$\mbox{LEAB} = \frac{a_k - a_{(k+1)}}{a_{avg}} \; ; \; \mbox{LENAB} = \frac{a_{max} - a_{min}}{a_{avg}} \label{eq:leading}$$


- Referenced to V_P.
- 4. The V values within formulae relate to voltages at or across relative pin numbers, i.e. $V_{7-4}/V_{1-2} = voltage$ value across pins 7 and 4 divided by voltage value across pins 1 and 2.
- 5. V₉₋₄ AC short-circuited.
- 6. Frequency response V_{7-4}/V_{9-4} is equal to frequency response V_{7-4}/V_{1-2} .
- 7. At $V_{(ripple)} = 500$ mV eff; measured across R_M ; $f_i = 50$ Hz.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

DC-coupled vertical deflection circuit

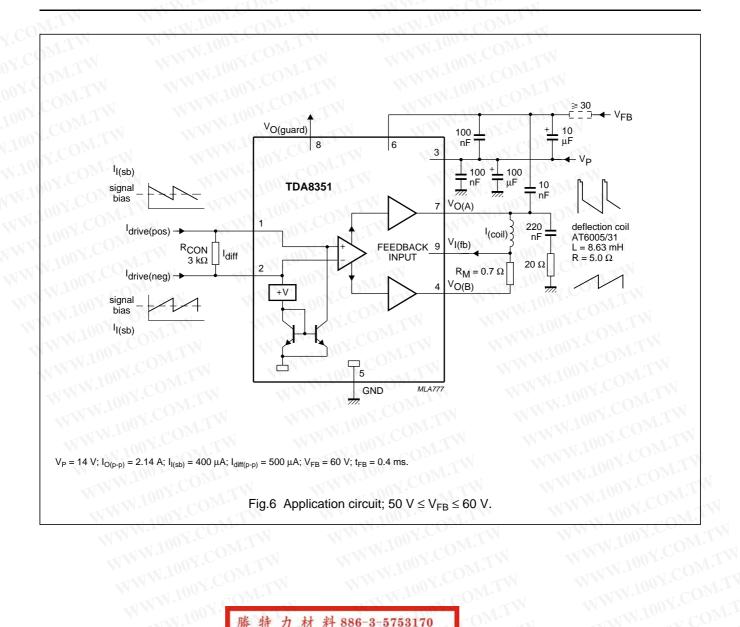
TDA8351



DC-coupled vertical deflection circuit

TDA8351

APPLICATION INFORMATION


WWW.100Y.COM.TW 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM,TW 1999 Sep 27 WWW.100Y.COM

WWW.100Y.COM.

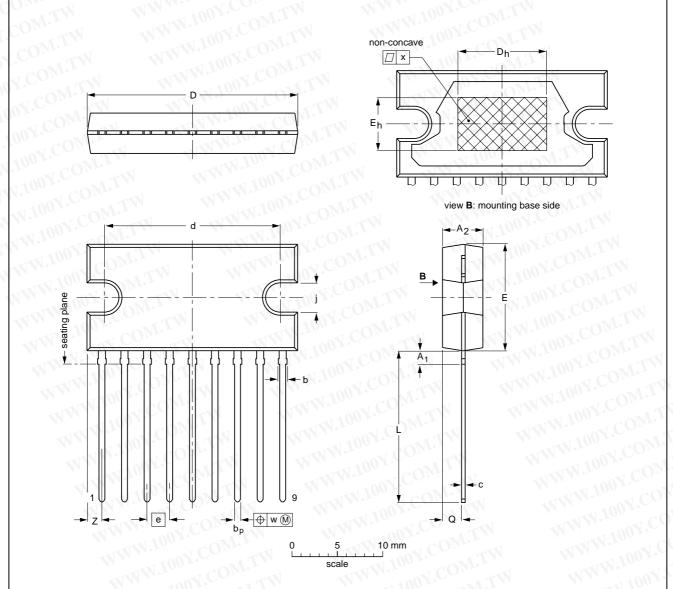
DC-coupled vertical deflection circuit

TDA8351

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM 1999 Sep 27 WWW.100Y.COM.

WWW.100Y.COM.


DC-coupled vertical deflection circuit

TDA8351

PACKAGE OUTLINE

SIL9P: plastic single in-line power package; 9 leads

SOT131-2

mm 2.0 4.6 4.2 1.1 0.75 0.48 24.0 20.0 10 12.2 11.8 2.54 6 3.4 17.2 2.1 0.25	
	0.03 2.
ote WWW.100 COM.	WW

Note

OUTLINE		REFER	ENCES	MMM.	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	IN Too	PROJECTION	ISSUE DATE
SOT131-2	MA	N.100X.	MITM	M. 10		92-11-17 95-03-11

DC-coupled vertical deflection circuit

TDA8351

SOLDERING

Introduction to soldering through-hole mount packages

This text gives a brief insight to wave, dip and manual soldering. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

Soldering by dipping or by solder wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joints for more than 5 seconds.

The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg(max)}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

Suitability of through-hole mount IC packages for dipping and wave soldering methods

DACKACE	SOLDERING METHOD				
PACKAGE	DIPPING	WAVE			
DBS, DIP, HDIP, SDIP, SIL	suitable	suitable ⁽¹⁾			

Note

1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.

DEFINITIONS

Data sheet status			
Objective specification This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values	DY. COMITY WWW. 100Y. COMITY WWW. 100Y. C		
more of the limiting values of the device at these or at	n accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of this specification limiting values for extended periods may affect device reliability.		
Application information			
Where application informat	tion is given, it is advisory and does not form part of the specification.		

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

NWW.100Y.COM.TW Philips Semiconductors Product specification

.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

DC-coupled vertical deflection circuit

WWW.101

.100X.COM.7

WWW.100Y.COM.

100Y.COM.TW

WWW.100Y.COM.

TDA8351

WWW.100Y.COM. **NOTES**

W.100X.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW 1999 Sep 27 WWW.100Y.COM.

NWW.100Y.COM.TW Philips Semiconductors Product specification

.100Y.COM.TW

WW.100Y.COM.TW

Y.COM.TW

DC-coupled vertical deflection circuit

WWW.100

.100X.COM.7

WWW.100Y.COM.

WWW.10

TDA8351

WWW.100Y.COM. WWW.100Y.COM.TW **NOTES**

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100x.COM 14 1999 Sep 27 WWW.100Y.COM.

NWW.100Y.COM.TW Philips Semiconductors Product specification

DC-coupled vertical deflection circuit

WWW.100

.100X.COM.7

WWW.100Y.COM.

TDA8351

WWW.100Y.COM. **NOTES**

WWW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

.100Y.COM.TW

N.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100X.COM 1999 Sep 27 WWW.100Y.COM.