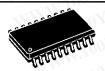
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



TEA2025B TEA2025D

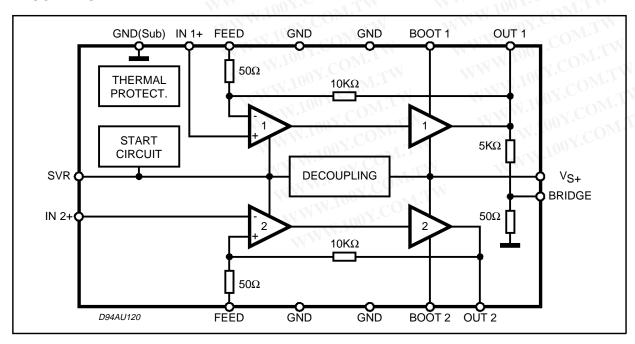
STEREO AUDIO AMPLIFIER

- DUAL OR BRIDGE CONNECTION MODES
- FEW EXTERNAL COMPONENTS
- SUPPLY VOLTAGE DOWN TO 3V
- HIGH CHANNEL SEPARATION
- VERY LOW SWITCH ON/OFF NOISE
- MAX GAIN OF 45dB WITH ADJUST EXTER-NAL RESISTOR
- SOFT CLIPPING
- THERMAL PROTECTION
- 3V < V_{CC} < 15V
- $P = 2 \bullet 1W, V_{CC} = 6V, R_L = 4\Omega$
- $P = 2 \cdot 2.3W$, $V_{CC} = 9V$, $R_L = 4Ω$
- $P = 2 \bullet 0.1W$, $V_{CC} = 3V$, $R_L = 4\Omega$

POWERDIP 12+2+2

SO20 (12+4+4)

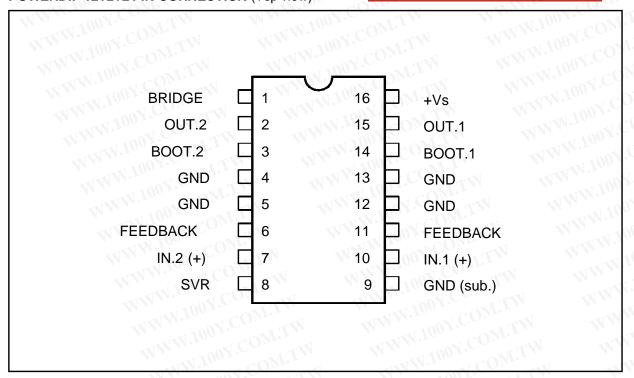
ORDERING NUMBERS: TEA2025B (PDIP) TEA2025D (SO)

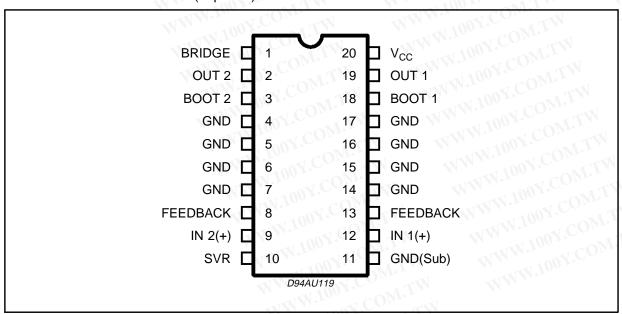

DESCRIPTION

The TEA2025B/D is a monolithic integrated circuit in 12+2+2 Powerdip and 12+4+4 SO, intended for use as dual or bridge power audio amplifier portable radio cassette players.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Test Conditions	Unit ⊲
Vs	Supply Voltage	15	V
lo	Ouput Peak Current	1.5	Α
TJ	Junction Temperature	150	°C
T _{stg}	Storage Temperature	150	√N °C


BLOCK DIAGRAM


June 1994 1/9

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

POWERDIP 12+2+2 PIN CONNECTION (Top view)

SO 12+4+4 PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Description	MA	SO 12+4+4 (*)	PDIP 12+2+2 (**)	Unit
R _{th i-case}	Thermal Resistance Junction-case	Max	15	15	°C/W
R _{th i-amb}	Thermal Resistance Junction-ambient	Max	65	60	°C/W

^(*) The $R_{th \; j\text{-}amb}$ is measured with 4sq cm copper area heatsink

^(**) The R_{th j-amb} is measured on devices bonded on a 10 x 5 x 0.15cm glass-epoxy substrate with a 35µm thick copper surface of 5 cm².

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C, V_{CC} = 9V, Stereo unless otherwise specified)

Symbol	Parameter	Test Conditions	OM.		Min.	Тур.	Max.	Unit
Vs	Supply Voltage	1007	anv	TAI	3	- T	12	V
lq	Quiescent Current	N WWW. 100X				35	50	mA
Vo	Quiescent Output Voltage	WWW.I	1.CO	41	V	4.5	111.	< ∨ C
Av	Voltage Gain	Stereo Bridge	N.CC	M.	43 49	45 51	47 53	dB
ΔA_V	Voltage Gain Difference	WWW.	NV.C	$O_{M_{\Sigma}}$	TW		±1	dB
Rj	Input Impedance	L.V.V.	00-	c_{0M}	- 31	30	-TVVV	ΚΩ
PO	Output Power (d = 10%)	Stereo 8 (per channel) Bridge	9V 9V 6V 6V 6V 3V 3V 12V 9V 6V 6V 3V 3V	4Ω 8Ω 4Ω 8Ω 16Ω 32Ω 4Ω 32Ω 8Ω 4Ω 8Ω 4Ω 32Ω	0.7	2.3 1.3 1 0.6 0.25 0.13 0.1 0.02 2.4 4.7 2.8 1.5 0.18 0.06	A MA	w
d	Distortion	$Vs = 9V; R_L = 4\Omega$	Stereo Bridge		10 X . C	0.3 0.5	1.5	%
SVR	Supply Voltage Rejection	$f = 100Hz, V_R = 0.5V, R_g = 0$	4.	WIL	40	46	- 41	dB
E _N (IN)	Input Noise Voltage	$R_G = 0$ $R_G = 10 \ 4\Omega$		MV	1001	1.5 3	3 6	mV
CT	Cross-Talk	$f = 1KHz, R_g = 10K\Omega$			40	52	1.	dB

Term. N° (PDIP)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DC VOLT (V)	0.04	4.5	8.9	0	0	0.6	0.04	8.5	0	0.04	0.6	0	0	8.9	4.5	9

Figure 1: Bridge Application (Powerdip)

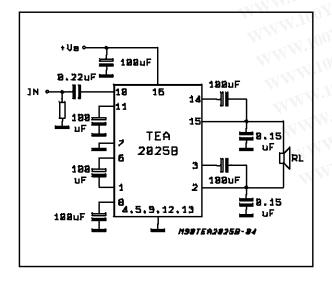


Figure 2: Stereo Application (Powerdip)

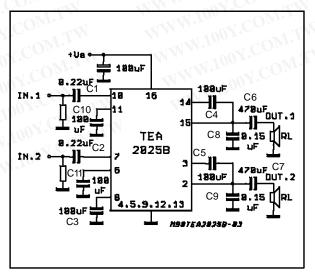
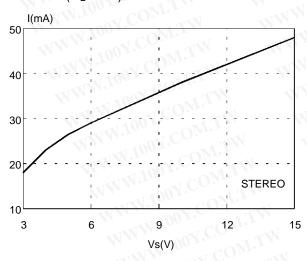



Figure 3: Supply Current vs. Supply Voltage $(R_L = 4\Omega)$

Figure 5: Output Power vs. Supply Voltage (THD = 10%, f = 1KHz)

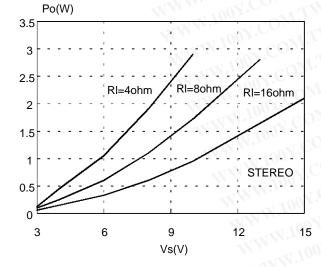


Figure 4: Output Voltage vs. Supply Voltage

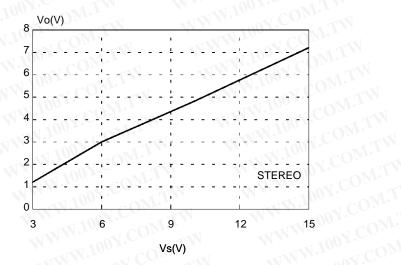


Figure 6: THD versus Output Power $(f = 1KHz, V_S = 6V)$

APPLICATION INFORMATION

Input Capacitor

Input capacitor is PNP type allowing source to be referenced to ground.

In this way no input coupling capacitor is required. However, a series capacitor (0.22 uF)to the input side can be useful in case of noise due to variable resistor contact.

Bootstrap

The bootstrap connection allows to increase the output swing.

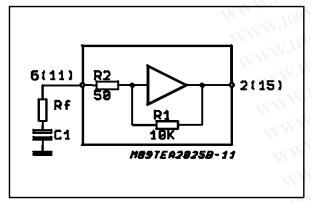
The suggested value for the bootstrap capacitors (100uF) avoids a reduction of the output signal also at low frequencies and low supply voltages.

Voltage Gain Adjust

STEREO MODE

The voltage gain is determined by on-chip resistors R1 and R2 together with the external RfC1 series connected between pin 6 (11) and ground.

The frequency response is given approximated by:


$$\frac{V_{OUT}}{V_{IN}} = \frac{R1}{Rf + R2 + \frac{1}{JWC1}}$$

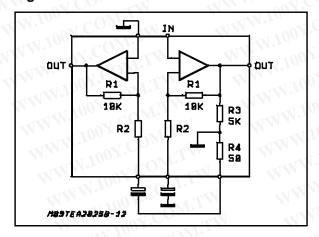
With Rf=0, C1=100 uF, the gain results 46 dB with pole at f=32 Hz.

THE purpose of Rf is to reduce the gain. It is recommended to not reduce it under 36 dB.

BRIDGE MODE

Figure 7

The bridge configuration is realized very easily thanks to an internal voltage divider which provides (at pin 1) the CH 1 output signal after reduction. It is enough to connect pin 6 (inverting input of CH 2) with a capacitor to pin 1 and to connect to ground the pin 7.


The total gain of the bridge is given by:

$$\frac{V_{OUT}}{V_{IN}} = \frac{R1}{Rf + R2 + \frac{1}{JWC1}} (1 + \frac{R3}{R4} + \frac{R1}{R2 + R4 + \frac{1}{JWC1}})$$
and with the suggested values (C1 = C2 = 100 uF

and with the suggested values (C1 = C2 = $100 \,\mu\text{F}$ Rf= 0) means:

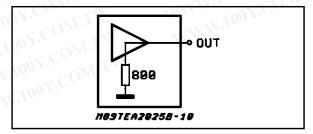
Gv = 52 dB

Figure 8

with first pole at f = 32 Hz

Output Capacitors.

The low cut off frequency due to output capacitor depending on the load is given by:


$$F_L = \frac{1}{2 \; \Pi C_{OUT} \bullet R_L}$$

with C_{OUT} 470 μF and R_L = 4 ohm it means F_L = 80 Hz.

Pop Noise

Most amplifiers similar to TEA 2025B need external resistors between DC outputs and ground in order to optimize the pop on/off performance and crossover distortion.

Figure 9

The TEA 2025B solution allows to save components because of such resistors (800 ohm) are included into the chip.

WW.100Y.COM.TW **TEA2025B - TEA2025D**

Stability

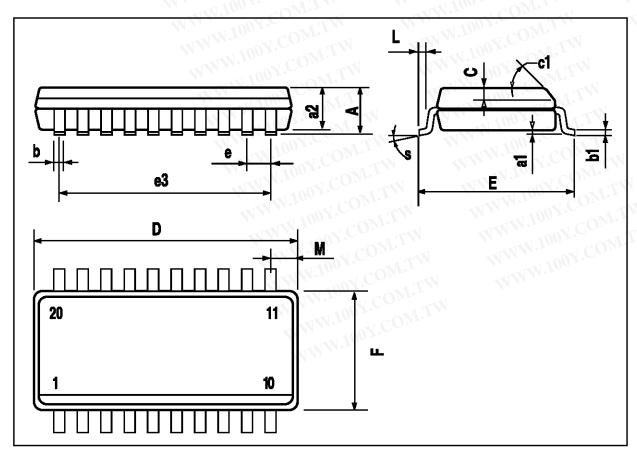
A good layout is recommended in order to avoid oscillations.

Generally the designer must pay attention on the following points:

- Short wires of components and short connections.
- No ground loops.
- Bypass of supply voltage with capacitors as nearest as possible to the supply I.C.pin.The low value(poliester)capacitors must have good temperature and frequency characteristics.

- No sockets.
- 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that Po (and therefore Ptot) and Id are reduced.

APPLICATION SUGGESTION


The recommended values of the components are those shown on stereo application circuit of Fig. 2 different values can be used, the following table can help the designer.

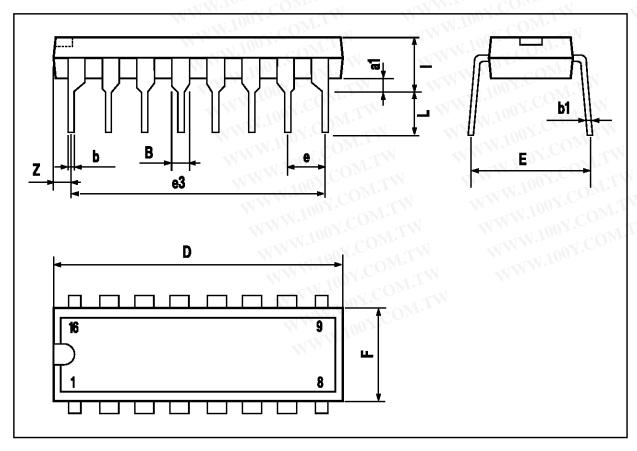
WWW.100Y.COM.TW

COMPONENT	RECOMMENDED VALUE	PURPOSE	LARGER THAN	SMALLER THAN
C1,C2	0.22μF	INPUT DC DECOUPLING IN CASE OF SLIDER CONTACT NOISE OF VARIABLE RESISTOR	N.100Y.COM. N. 100Y.COM. N. 100Y.COM. N. 100Y.COM.	ILM MMA
C3	100μF	RIPPLE REJECTON	M.M.W.100X.CO	DEGRADATION OF SVR, INCREASE OF THD AT LOW FREQUENCY AND LOW VOLTAGE
C4,C5	100μF	BOOTSTRAP	WWW.	On
C6,C7	470μF	OUTPUT DC DECOUPLING	WWW.100Y	INCREASE OF LOW FREQUENCY CUT- OFF
C8,C9	0.15μF	FREQUENCY STABILITY	MMM:100	DANGER OF OSCILLATIONS
C10, C11	100μF	INVERTING INPUT DC DECOUPLING	WWW.I	INCREASE OF LOW FREQUENCY CUT-OFF

SO20 PACKAGE MECHANICAL DATA

N.1	A'COMP	mm 💎	WW. TOOK!	COMMENT	inch				
M.100	MIN.	TYP.	MAX.	CO MIN.	TYP.	MAX.			
WWI	COM	-XX	2.65	A'COMT.	WW	0.104			
L.WW.1	0.1		0.3	0.004	N SN'	0.012			
- ATIN	1001.	William	2.45	OM.I	- XI	0.096			
MAI	0.35	MITH	0.49	0.014	1	0.019			
M.	0.23	WILMO	0.32	0.009	Lin	0.013			
MM	100Y.	0.5		11001.00	0.020	W 10			
WV	1001	CULTIV	45 ((typ.)	WIIN	WW			
SN.	12.6	I.COM TW	13.0	0.496	WILL	0.512			
	10	V.CONL.	10.65	0.394	JATA	0.419			
	MW.Io	1.27	CN CX	WW. TO	0.050	WWV			
	TWW.1	11.43		MM.Ing	0.450	WW			
	7.4	ION COM	7.6	0.291	CONT	0.299			
	0.5	1001. CON	1.27	0.020	COM	0.050			
	M. M.	11007.0	0.75	W 10	DI	0.030			

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787


IN.100X.COM.TW

Http://www.100y.com.tw

DIP16 PACKAGE MECHANICAL DATA

1. W.1	COM	<u> </u>	WW. Inc	ON	WW.	· CON	Low
DIM.	1001.	mm 1	1,1007.	roM.TV	inch	N.100 - CO	1.1
MM	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	M.T.W
a1	0.51	WIL	WW 100	0.020	VVV	W.1007.	$o_{M,TM}$
В	0.85	M.TW	1.40	0.033		0.055	COM.T
b	W.1007.	0.50	WW.1	OOX.	0.020	MM.1001.	COM.
b1	0.38	OMITW	0.50	0.015		0.020	$_{\rm V.COM}$
D	11/W.1007.	COMITA	20.0	V.100 F. CON		0.787	NY.CO?
E	M. 100 r	8.80	WW	W.Inn. CO	0.346	MMM.I	OUN.CO
е	MMM.100	2.54	V WY	M. Ind. C.	0.100	WWW.	100 Y.C
e3	MMMin	17.78	W W	MAI TOOX	0.700	MMM	100Y.
F	WWW.	CONT.	7.10	VVV	COMITY	0.280	N.100Y
ı	MMW.	100 X.COM	5.10	WWW. 100	I.CO.	0.201	W.100
L	MMA	3.30	N.TW	WWW.	0.130	M.	N 1 10
Z	MM	1100 Y.CO	1.27	WW TI	OOY.COM.T	0.050	1.1

EW.100Y.COM.TW

