
TIC236 SERIES SILICON TRIACS

Copyright © 2000, Power Innovations Limited, UK

DECEMBER 1971 - REVISED JUNE 2000

- High Current Triacs
- 12 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
Repetitive peak off-state voltage (see Note 1)	TIC236D TIC236M TIC236S TIC236N	V _{DRM} 400 600 700 800		V	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)		I _{T(RMS)}	12	Α	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)		I _{TSM}	100	Α	
Peak gate current			±1	Α	
Operating case temperature range			-40 to +110	°C	
Storage temperature range			-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds		T _{stg} T _L	230	√ °C	

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 300 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = Rated V _{DRM}	I _G = 0	T _C = 110°C	W	NW.	±2	mA
I _{GT}	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs	11	12	50	COx
		$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-19	-50	- a0
	current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs	4	-16	-50	mA
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		34	W . z	
V _{GT}	W 1	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.8	2	-1 (
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	v
	voltage	V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs	N	-0.8	-2	
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs	-1	0.9	2	
V _T	On-state voltage	I _{TM} = ±17 A	I _G = 50 mA	(see Note 4)	44	±1.4	±2.1	V
I _H	Holding current	$V_{\text{supply}} = +12 \text{ V}\dagger$	I _G = 0	Init' I _{TM} = 100 mA	r IV	22	40	- A
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$	1	-12	-40	mA

[†] All voltages are with respect to Main Terminal 1.

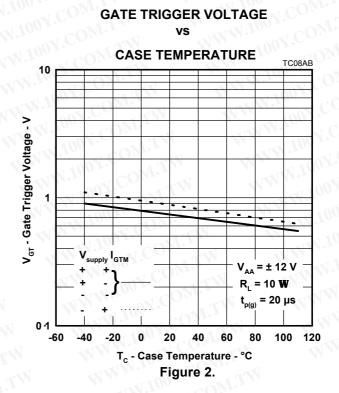
NOTE 4: This parameter must be measured using pulse techniques, t_p = ≤ 1 ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

PARAMETER		COMP	TEST CONDITIONS			TYP	MAX	UNIT
	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$	(see Note 5)	A. TOOA' COM'	V		80 -80	mA
dv/dt	Critical rate of rise of off-state voltage	V _D = Rated V _D	I _G = 0	T _C = 110°C	IN	±400		V/µs
dv/dt _(c)	Critical rise of commutation voltage	V_D = Rated V_D di/dt = 0.5 $I_{T(RMS)}$ /ms	TA M	$T_{C} = 80^{\circ}C$ $I_{T} = 1.4 I_{T(RMS)}$	±1.2	±9		V/µs
di/dt	Critical rate of rise of on -state current	V_D = Rated V_D $di_G/dt = 50 \text{ mA/}\mu\text{s}$	I _{GT} = 50 mA	T _C = 110°C	M.T	±100		A/μs

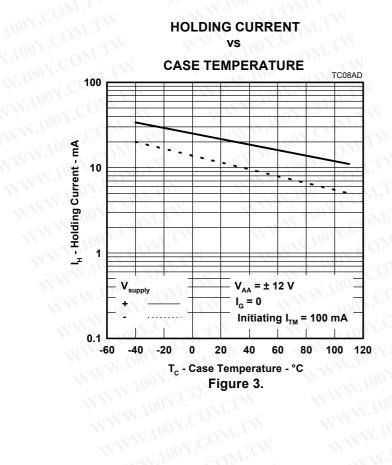
[†] All voltages are with respect to Main Terminal 1.

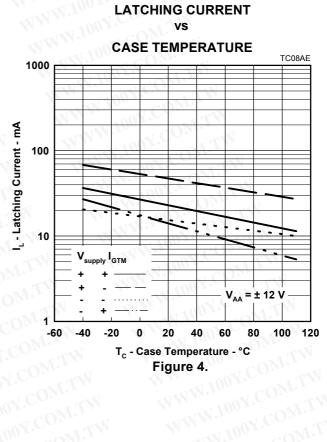
NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: R_G = 100 $\Omega,$ $t_{p(g)}$ = 20 $\mu s,$ t_r = \leq 15 ns, f = 1 kHz.


thermal characteristics

x 100 3	PARAMETER			MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance	01.	$\Gamma M_{\rm C}$	2	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance	MY.C	O- K 1	62.5	°C/W

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


TYPICAL CHARACTERISTICS

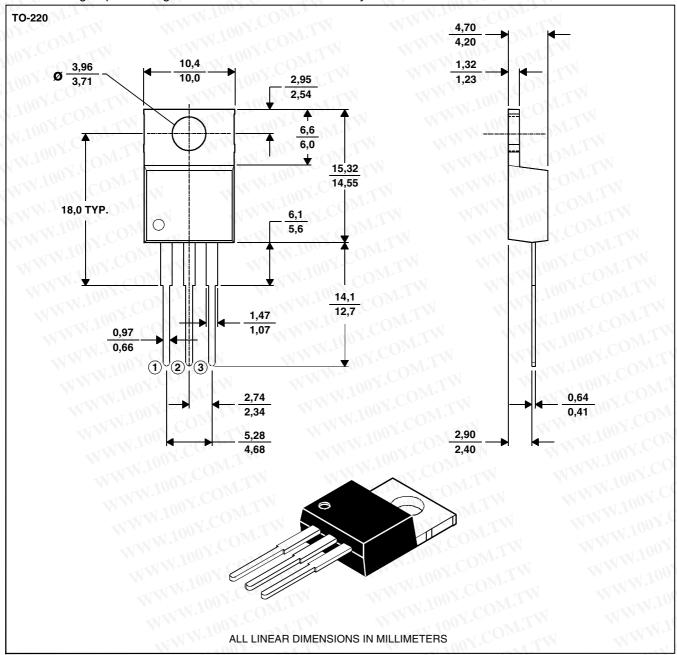

GATE TRIGGER CURRENT VS **CASE TEMPERATURE** TC08AA 1000 l_{στ} - Gate Trigger Current - mA 100 10 1 V_{AA} = ± 12 V R_L = 10 W = 20 µs 0 1 -60 -40 -20 0 20 40 80 100 120 60 T_c - Case Temperature - °C Figure 1.

INFORMATION PRODUCT WWW.100Y.COM.TW

TYPICAL CHARACTERISTICS

WWW.100Y.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Power INNOVATIONS


WWW.100Y.COM.TW

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTE A: The centre pin is in electrical contact with the mounting tab.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PRODUCT INFORMATION

IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 2000, Power Innovations Limited

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.COM.T

