SN54LS297 ... J OR W PACKAGE SN74LS297 ... N PACKAGE

(TOP VIEW)

U₁₆ Vcc

15 C

14 D

11

SN54LS297 . . . FK PACKAGE

(TOP VIEW)

m

2

GND ž AG.

NC-No internal connection

2 C C

1 20 19

10 11 12 13

່ບ

ØB

18 1 D

17 [ØA2

15 ECPD OUT

14 XORPD OUT

16 NC

13 ØA2

10 🗌 ØB

9 ØA1

12 ECPD OUT

XORPD OUT

B I I

3

AL 2

ENCTR

K CLK

GND 8

I/D CLK

ENCTR

1/D CLK 7

K CLK 5

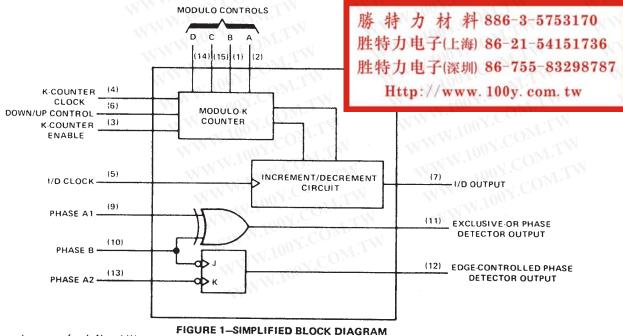
NC 6

D/UI8

SDLS155 - JANUARY 1981 - REVISED MARCH 1988

- **Digital Design Avoids Analog Compensation Errors**
- Easily Cascadable for Higher Order Loops
 - **Useful Frequency from DC to:** 50 MHz Typical (K Clock) 35 MHz Typical (I/D Clock)

description


The SN54LS297 and SN74LS297 devices are designed to provide a simple, cost-effective solution to highaccuracy, digital, phase-locked-loop applications. These devices contain all the necessary circuits, with the exception of the divide-by-N counter, to build first order phase-locked loops as described in Figure 1.

Both exclusive-OR (XORPD) and edge-controlled (ECPD) phase detectors are provided for maximum flexibility.

Proper partitioning of the loop function, with many of the building blocks external to the package, makes it easy for the designer to incorporate ripple cancellation or to cascade to higher order phase-locked loops.

The length of the up/down K counter is digitally programmable according to the K counter function table. With A, B, C, and D all low, the K counter is disabled. With A high and B, C, and D low, the K counter is only

three stages long, which widens the bandwidth or capture range and shortens the lock time of the loop. When A, B, C, and D are all programmed high, the K counter becomes seventeen stages long, which narrows the bandwidth or capture range and lengthens the lock time. Real-time control of loop bandwidth by manipulating the A through D inputs can maximize the overall performance of the digital phase-locked loop.

Pin numbers shown are for J, N and W packages.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 1988, Texas Instruments Incorporated

SDLS155 - JANUARY 1981 - REVISED MARCH 1988

description (continued)

The 'LS297 can perform the classic first-order phase-locked loop function without using analog components. The accuracy of the digital phase-locked loop (DPLL) is not affected by V_{CC} and temperature variations, but depends solely on accuracies of the K clock, I/D clock, and loop propagation delays. The I/D clock frequency and the divide-by-N modulos will determine the center frequency of the DPLL. The center frequency is defined by the relationship $f_c = I/D$ Clock/2N (Hz).

logic diagram (positive logic)

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SDLS155 – JANUARY 1981 – REVISED MARCH 1988

D	C	В	A	MODULO (K)
E.	L	01.	L	Inhibited
L	100	L	H	23
1	· L -	Сн	2 - E	24
L	N.34	Н	н	25
L	HOO	L	L	26
L	н	VLCO	H	27
L	. H.	Н	NL -	28
Ł	н	н	н	29
н	L.	L	O'L	210
н	L	10L	H	211
н	L I	н	L	212
н	L	н		213
н	н	N L	LO	214
н	H	L,	н	215
н	н	Н	LC	216
н	H I	H	н	217

K COUNTER FUNCTION TABLE (DIGITAL CONTROL)

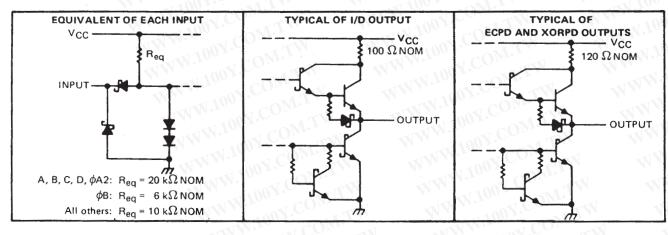
FUNCTION TABLE

EXCLUSIVE-OR PHASE DETECTOR

ſ	φ A 1	φB	XORPD OUT	
ľ	L	L	N.J. L.COM	1
4.		H I	ALL OF	k
P	H	L	H CO	T
ł	Н	н	W.LL CO	P

FUNCTION TABLE EDGE-CONTROLLED PHASE DETECTOR

φ A 2	φB	ECPD OUT
H or L	+ 127	Н
- + OM	H or L	LW.10
H or L	\mathcal{L}	No change
- 1 CO ²	H or L	No change
	N	


H = steady-state high level

L = steady-state low level

transition from high to low

f = transition from low to high

schematics of inputs and outputs

operation

The phase detector generates an error signal waveform that, at zero phase error, is a 50% duty cycle square wave. At the limits of linear operation, the phase detector output will be either high or low all of the time, depending on the direction of the phase error ($\phi_{in} - \phi_{out}$). Within these limits, the phase detector output varies linearly with the input phase error according to the gain k_d, which is expressed in terms of phase detector output per cycle of phase error. The phase detector output can be defined to vary between ±1 according to the relation:

$$PD Output = \frac{\% high - \% low}{100}$$
(1)

The output of the phase detector will be $k_d \phi_e$, where the phase error $\phi_e = \phi_{in} - \phi_{out}$.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SDLS155 – JANUARY 1981 – REVISED MARCH 1988

Exclusive-OR phase detectors (XORPD) and edge-controlled phase detectors (ECPD) are commonly used digital types. The ECPD is more complex than the XORPD logic function, but can be described generally as a circuit that changes states on one of the transitions of its inputs. kd for an XORPD is 4 because its output remains high (PD output = 1) for a phase error of 1/4 cycle. Similarly, kd for the ECPD is 2 since its output remains high for a phase error of 1/2 cycle. The type of phase detector will determine the zero-phase-error point, i.e., the phase separation of the phase detector inputs for ϕ_e defined to be zero. For the basic DPLL system of Figure 2, $\phi_e = 0$ when the phase detector output is a square wave. The XORPD inputs are 1/4 cycle out of phase for zero phase error. For the ECPD, $\phi_e = 0$ when the inputs are 1/2 cycle out of phase.

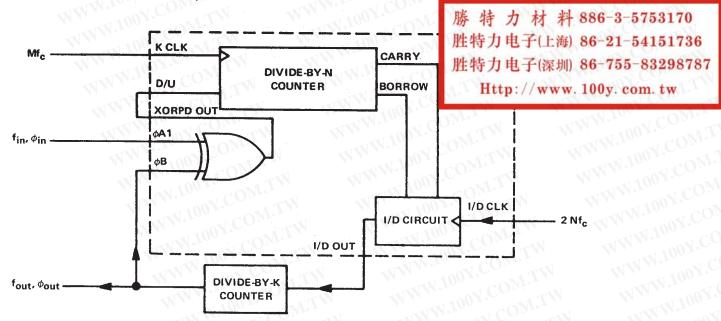
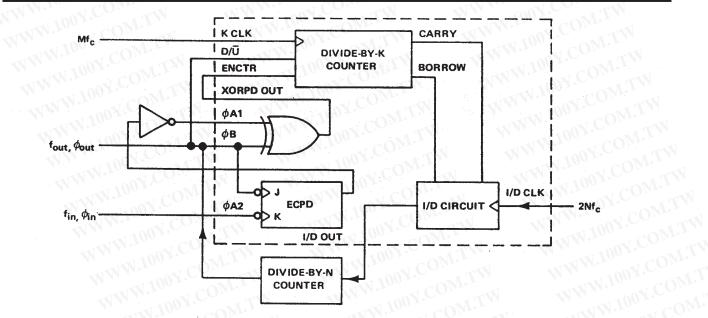


FIGURE 2-DPLL USING EXCLUSIVE-OR PHASE DETECTION

The phase detector output controls the up/down input to the K counter. The counter is clocked by input frequency Mf_c , which is a multiple M of the loop center frequency f_c . When the K counter recycles up, it generates a carry pulse. Recycling while counting down generates a borrow pulse. If the carry and borrow outputs are conceptually combined into one output that is positive for a carry and negative for a borrow, and if the K counter is considered as a frequency divider with the ratio Mf_c/K , the output of the K counter will equal the input frequency multiplied by the division ratio. Thus the output from the K counter is $(k_d \phi_e Mf_c)/K$.

The carry and borrow pulses go to the increment/decrement (I/D) circuit, which, in the absence of any carry or borrow pulse, has an output that is 1/2 of the input clock I/D CLK. The input clock is just a multiple, 2N, of the loop center frequency. In response to a carry or borrow pulse, the I/D circuit will either add or delete a pulse at I/D OUT. Thus the output of the I/D circuit will be Nf_c + ($k_d\phi_eMf_c$)/2K.

The output of the N counter (or the output of the phase-locked loop) is thus:


$$f_0 = f_c + (k_d \phi_e M f_c)/2KN$$

If this result is compared to the equation for a first-order analog phase-locked loop, the digital equivalent of the gain of the VCO is just $Mf_c/2KN$ or f_c/K for M = 2N.

Thus the simple first-order phase-locked loop with an adjustable K counter is the equivalent of an analog phase-locked loop with a programmable VCO gain.

SDLS155 - JANUARY 1981 - REVISED MARCH 1988

absolute maximum rating over operating free-air temperature range (unless otherwise noted)

ute maximum rating over opera	iting free-air temperature range (unless otherwise noted)
Supply voltage, V _{CC} (see Note 1) . Input voltage	·····
Operating free-air temperature range	: SN54LS297
Storage temperature range	– 65° C to 150° C

recommended operating conditions

	nded operating conditions	V.100Y.COM.TW							
	AL.	1001. M.T.	S	N54LS2	297	S	N74LS2	297	
	War	W. TON TW	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	NN.IV CONT.	4.5	5	5.5	4.75	5	5.25	V
юн	High-level output current	I/D OUT			- 1.2		01.	- 1.2	mA
	Thigh level output cultern	EXOR, ECPD		NW	- 400	N.		- 400	μA
OL	Low-level output current	I/D OUT		-15	12	1	CON	24	mA
<u> </u>	Low-level output current	XOR, ECPD			4	007	-01	8	mA
clock	Clock frequency	K Clock	0	1	32	0	1.00	32	MHz
CIUCK		I/D Clock	0		16	0		16	MHz
tw	Width of clock input pulse	K Clock	16			16			ns
•vv		I/D Clock	33		WIN	33	1.	U	ns
t _{su} , to K	Setup time to K Clock t	U/D; ENCTR	30			30	10	COM	ns
h	Hold time from K Clock †	U/D, ENCTR	0		- WY	0	004		ns
TA	Operating free-air temperature	COM-	- 55		125	0		70	°c

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SDLS155 - JANUARY 1981 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	CONT.	TES:	CONDITIO	NST CON	SI	N54LS2	97 MAX		N74LS2	97 MAX	UNIT	
VIH	High-level input v	oltage		NWW-	TACO	2			2			V	
VIL	Low-level input v	oltage		March 1	3999 F			0.7		d With	0.8		
VIK	Input clamp volta	ge	V _{CC} = MIN,	lj =18 mA	1001	110	1.1	-1.5			-1.5		
Varia	High-level	I/D OUT		VIH = 2 V. 10H =	IOH = MAX	2.4	Nr.		2.4			v	
∨он	output voltage	Others			IOH = MAX	2.5		c1	2.7	N IN			v v v
	ANN.	I/D OUT	WT	N.	IOL = 12 mA		0.25	0.4		0.25	0.4		
VOL	Low-level		V _{CC} = MIN,	$V_{IH} = 2 V_{i}$	10L = 24 mA	.00	1		1	0.35	0.5	N.C	
VUL	output voltage	Others	VIL = VIL max		IOL = 4 mA		0.25	0.4		0.25	0.4	box.	
	N.N.	Others			IOL = 8 mA	2.0	1	1.11		0.35	0.5		
4	Input current at maximum input voltage	N.N.100X	V _{CC} = MAX,	V ₁ = 7 V	MMM.TO	07. 07.	.coN	0.1		A A	0.1	mA	
		U/D, EN, ØA1	V _{CC} = MAX,	V ₁ = 2.7 V			J CO	40	N		40		
IH	High-level	φB				100	2	60			60	μA	
	input corrent	All others					N.C.	20	N.	- 1/ 1/	20		
	Low-level	U/D, ΕΝ, ΦΑ1	V _{CC} = MAX,	V1 = 0.4 V	- TW	N. 20	~1 C	- 0.8			- 0.8	V. //	
IL.	input current	φΒ	$V_{\rm I} = 0.4 V$	v] = 0.4 v		M 1	00 ×.	-1.2			-1.2	mA	
		All others	v] = 0.4 v	WW WW			. Non.	- 0.4	17	N	- 0.4		
os	Short-circuit	I/D OUT	V _{CC} = MAX	Met	-1	-30	Too	-130	-30		-130		
05	output current §	Others	CC - MAX			-20	1100	-100	-20		-100	mΑ	
сс	Supply current	MM	V _{CC} = MAX, All outputs oper	All inputs gr	ounded, 🔨		75	120	OM.	75	120	mA	

[‡]All typical values are of $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§ Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM (INPUT)		TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	KCLK	.10	I/D OUT	1.17	32	50		
	I/D CLK	NNN -10	I/D OUT	$R_{L} = 667 \Omega,$	16	35	V.L.	MHz
tPLH	I/D CLK †	WWW.	I/D OUT	CL = 45 pF,	Jan.	15	25	ns
tPHL.	I/D CLK †		I/D OUT	See Note 2	700	22	35	ns
трін	φA1 or φB	Other input low	XOR OUT	M $M_{d,d}$	1100	10	15	ns
	φA1 or φB	Other input high	XOR OUT	WW W	-	17	25	
^t PHL	ϕ A1 or ϕ B	Other input low	XOR OUT	$R_{L} = 2 k \Omega,$	N.10	15	25	ns
	φA1 or φB	Other input high	XOR OUT	CL = 45 pF,		17	25	
tPLH	φB ↓		ECPD OUT	See Note 2	N.A.	20	30	ns
^t PHL	ΦA2↓		ECPD OUT	A.T.Y.		20	30	ns

¶tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

