
SCES221P-APRIL 1999-REVISED SEPTEMBER 2006

FEATURES

- Available in the Texas Instruments
 NanoStar[™] and NanoFree[™] Packages
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.2 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{cc}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Partial-Power-Down Mode Operation

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

See mechanical drawings for dimensions.

DESCRIPTION/ORDERING INFORMATION

This single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 5.5-V V_{CC} operation.

When data at the data (D) input meets the setup time requirement, the data is transferred to the $\overline{\mathbb{Q}}$ output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the level at the output.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

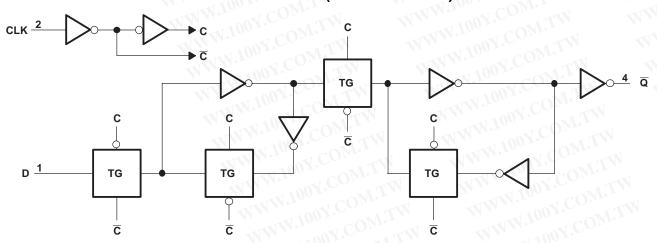
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NanoStar, NanoFree are trademarks of Texas Instruments.

SCES221P-APRIL 1999-REVISED SEPTEMBER 2006

ORDERING INFORMATION


T _A	PACKAGE ⁽¹⁾	100 Y.Co	ORDERABLE PART NUMBER	TOP-SIDE MARKING(2)	
MMMT	NanoStar™ – WCSP (DSBGA) 0.17-mm Small Bump – YEA		SN74LVC1G80YEAR	TOON.CON.TW	
MMM.	NanoFree™ – WCSP (DSBGA) 0.17-mm Small Bump – YZA (Pb-free)	Dayl of 2000	SN74LVC1G80YZAR	TOON COM TW	
WW	NanoStar™ – WCSP (DSBGA) 0.23-mm Large Bump – YEP	Reel of 3000	SN74LVC1G80YEPR	cx_	
-40°C to 85°C	NanoFree™ – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	MMM.100	SN74LVC1G80YZPR	W.100Y.COM.	
1	COT (COT 22) DDV	Reel of 3000	SN74LVC1G80DBVR	000	
1	SOT (SOT-23) – DBV	Reel of 250	SN74LVC1G80DBVT	C80_	
	COT (CC 70)	Reel of 3000	SN74LVC1G80DCKR	ov (31100)	
	SOT (SC-70) – DCK	Reel of 250	SN74LVC1G80DCKT	CX_	

- (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
- (2) DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site. YEA/YZA, YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, = Pb-free).

FUNCTION TABLE

INPL	JTS	OUTPUT
CLK	, D	Q
\uparrow	Н	L
1	L	Н
$CD_{N_{\bullet}}$	X	Q_0

LOGIC DIAGRAM (POSITIVE LOGIC)

SCES221P-APRIL 1999-REVISED SEPTEMBER 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MAN TO COMP.	MMM. TOWN.COM.	MIN	MAX	UNIT
V_{CC}	Supply voltage range	W. Ind. COM.	-0.5	6.5	V
V_{I}	Input voltage range ⁽²⁾	WW. 1002. COM. TW	-0.5	6.5	٧
Vo	Voltage range applied to any output in t	-0.5	6.5	V	
Vo	Voltage range applied to any output in t	he high or low state ⁽²⁾⁽³⁾	-0.5	$V_{CC} + 0.5$	V
I _{IK}	Input clamp current	V ₁ < 0	NV.	-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	W WWW. 100Y. CO. TW		±50	mA
	Continuous current through V _{CC} or GNE	DAY MANAY COME	WW	±100	mA
	W. TW. 100 F. COM.	DBV package		206	
0	Deckage thermal impedence (4)	DCK package	111	252	°C/W
θ_{JA}	Package thermal impedance ⁽⁴⁾	YEA/YZA package	W	154	C/VV
		YEP/YZP package	41	132	
T _{stg}	Storage temperature range	M.I.A. COM.	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

WWW.100Y.COM.TW

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

Recommended Operating Conditions⁽¹⁾

		W. TOOY.CO. TITTY W	MIN	MAX	UNIT	
V	COMP.	Operating	1.65	5.5	V	
V _{CC}	Supply voltage	Data retention only	1.5	CON	····	
	NA TOOK.	V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}	001	1.1.	
.,	View Inna Com	V _{CC} = 2.3 V to 2.7 V	1.7	100 X .	V	
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	2	LONY.CL) N-V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		1.700		
	WW. TIOOK.COM.TW	V _{CC} = 1.65 V to 1.95 V	NV - T	Mos		
١,,	Law level input veltage	V _{CC} = 2.3 V to 2.7 V	MA	0.7	V	
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V	VVV	0.8	$C_{\mathbf{A}^{ \mathcal{D} }}$	
		V _{CC} = 4.5 V to 5.5 V		$0.3 \times V_{CC}$		
VI	Input voltage	M. 1001. W.I.M.	0	5.5	V	
Vo	Output voltage	WWW.cox.cv	0	V _{CC}	V	
MAINA COM	V _{CC} = 1.65 V	(X)				
		V _{CC} = 2.3 V	-=1	-8		
I _{OH}	High-level output current	W 2W 31 100 1.	LA	mA		
		V _{CC} = 3 V	TW			
		V _{CC} = 4.5 V				
	W. 1007. COM	V _{CC} = 1.65 V	V.T.	4	M.In	
		V _{CC} = 2.3 V	MIN	8		
I_{OL}	Low-level output current	TW 2V WWW. ONLC	WT	16	mA	
		V _{CC} = 3 V	ONI.	24	WW	
		V _{CC} = 4.5 V	COMIT			
	MM 1007.C	$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$	T.IV	20	MAL	
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	COM	10	ns/V	
		$V_{CC} = 5 V \pm 0.5 V$	COM.	5		
T _A	Operating free-air temperature	. M.T. W. W. 101	-40	85	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

WWW.100Y.COM.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

SCES221P-APRIL 1999-REVISED SEPTEMBER 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP(1) MAX	UNIT	
W. 100,	$I_{OH} = -100 \mu\text{A}$	1.65 V to 5.5 V	V _{CC} - 0.1	- TX	
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2	7.7.	
V WWW.	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9	V	
V _{OH}	I _{OH} = -16 mA	3 V	2.4	V	
	I _{OH} = -24 mA	M. 13 V	2.3	OM.	
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8	OM.	
MMM	I _{OL} = 100 μA	1.65 V to 5.5 V	0.1		
	I _{OL} = 4 mA	1.65 V	0.45	5	
V	I _{OL} = 8 mA	2.3 V	0.3		
V _{OL}	I _{OL} = 16 mA	3 V	0.4	-1 CC	
	I _{OL} = 24 mA	Y.C.S.V	0.55		
	I _{OL} = 32 mA	4.5 V	0.55	N.C	
I _I CLK or D inputs	V _I = 5.5 V or GND	0 to 5.5 V	±10	μΑ	
l _{off}	V_I or $V_O = 5.5 \text{ V}$	00 0	±10	μА	
I _{cc}	$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V	10	μΑ	
Δl _{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V	500	μΑ	
C _i	$V_I = V_{CC}$ or GND	3.3 V	3.5	pF	

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			V _{CC} = ± 0.1	1.8 V 5 V	$V_{CC} = 2.5 V \\ \pm 0.2 V$		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5.5 V ± 0.5 V MIN MAX		UNIT
			MIN	MIN MAX		MIN MAX		MAX			
f _{clock}	Clock frequency	1007.0	MIN	160		160	1007.	160	1.1.4	160	MHz
t _w	Pulse duration, CLK high or low	M.M.	2.5	W	2.5	11/1/	2.5		2.5		ns
	Catura time a historia CLIVA	Data high	2.3	-XV	1.5	WW	1.3	V.CO	1.1	N	1/1
t _{su}	Setup time before CLK↑	Data low	2.5	F. A.	1.5	W	1.3	- 0	1.1	-41	ns
t _h	Hold time, data after CLK↑	M.M. 1001	0	TW	0.2	MA	0.9	01.	0.4	LAA	ns

Switching Characteristics

over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	V _{CC} = ± 0.	1.8 V I5 V	V _{CC} = ± 0.	2.5 V 2 V	V _{CC} = ± 0.	3.3 V 3 V	V _{CC} : ± 0.	= 5 V .5 V	UNIT
(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
f _{max}		MA. 100x	160	VII	160		160	0.10	160	Mo	MHz
t _{pd}	CLK	Q	3	9.1	1.5	6	1.3	4.2	1.1	3.8	ns

Switching Characteristics

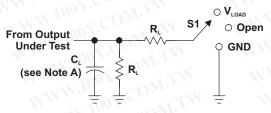
over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = ± 0.	2.5 V 2 V	V _{CC} = ± 0.		V _{CC} =		UNIT
(INPUT) (OUTPU	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
f _{max}			160		160		160		160		MHz
t _{pd}	CLK	Q	4.4	9.9	2.3	7	2	5.2	1.3	4.5	ns

Operating Characteristics

Oper Γ _A = 2	ating Characteristics 5°C						
- 1	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT
	FARAMETER	TEST CONDITIONS	TYP	TYP	TYP	TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	24	24	25	27	pF

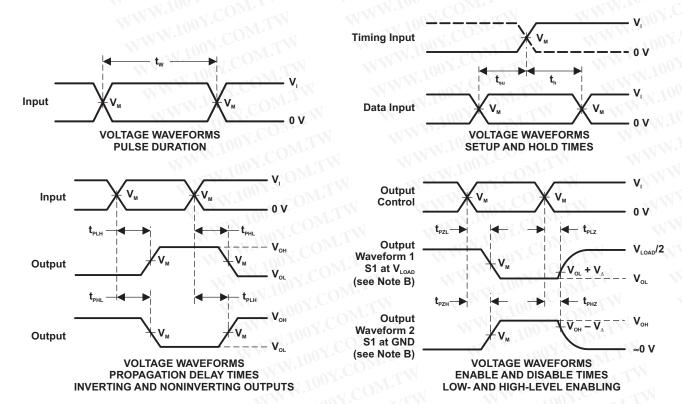
OOY.COM.TW


WWW.100Y.COM.TW WWW.100X.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 WWW.100Y.COM.TW 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

.com.TW

WWW.100Y.COM

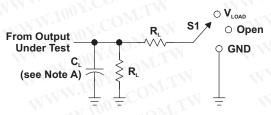
SCES221P-APRIL 1999-REVISED SEPTEMBER 2006


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

1007.	INPUTS		N 1	1001.	OM_{JJ}		1
V _{cc}	V	t _r /t _r	V _M	V _{LOAD}	C ^r	R _L	V_{Δ}
1.8 V ± 0.15 V	V _{cc}	≾ ≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 ΜΩ	0.15 V
$2.5 \text{ V} \pm 0.2 \text{ V}$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V
3.3 V ± 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 M Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.3 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{o} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

1007.0	INPUTS		N	100 x.	OM^{T}	_	1,1
V _{cc}	V	t,/t,	V _M	V _{LOAD}	C ^r	R _L	V
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 kΩ	0.15 V
$2.5 V \pm 0.2 V$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3 \text{ V} \pm 0.3 \text{ V}$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{o} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. $t_{\rm PZL}$ and $t_{\rm PZH}$ are the same as $t_{\rm en}$.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

om 10-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
SN74LVC1G80DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80DBVRE4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80DBVT	ACTIVE	SOT-23	DBV	5.0	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80DBVTE4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80DCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80DCKRE4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80DCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80DCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80DCKTE4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC1G80YEAR	NRND	WCSP	YEA	5	3000	TBD	SNPB	Level-1-260C-UNLIM
SN74LVC1G80YEPR	NRND	WCSP	YEP	5	3000	TBD	SNPB	Level-1-260C-UNLIM
SN74LVC1G80YZAR	NRND	WCSP	YZA	5	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SN74LVC1G80YZPR	ACTIVE	WCSP	YZP	5	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

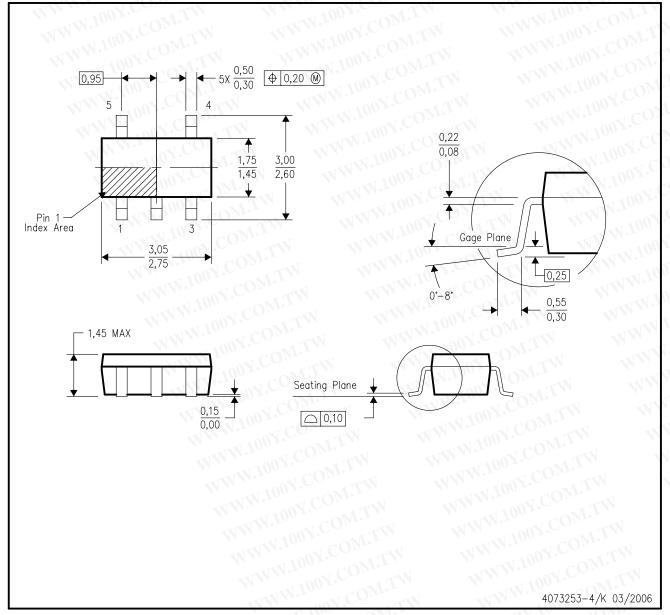
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

WWW.100Y.COM.TW

WWW.100Y

10-Jul-2006

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. WWW.100Y.COM.TW


> WWW.100Y.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

100Y.COM.TW

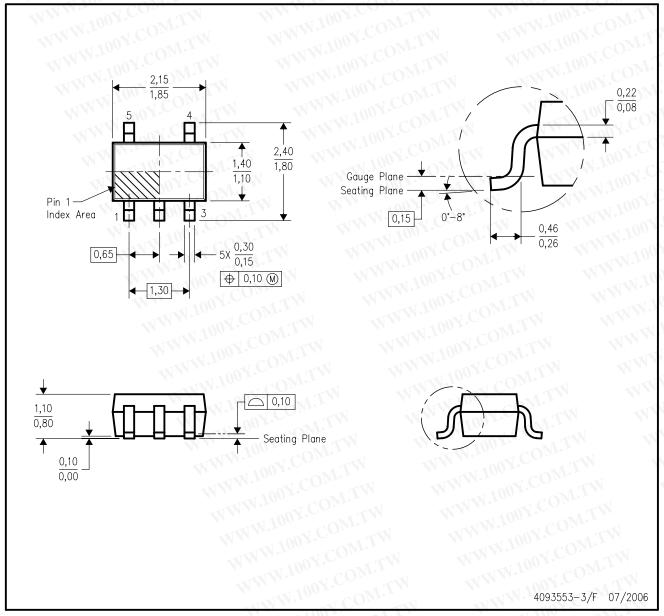
WWW.100Y.COM.TW

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

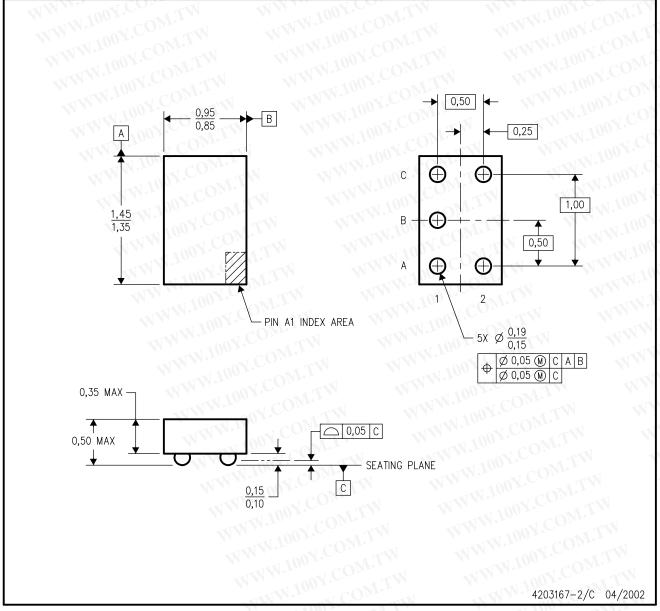
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

YEA (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. NanoStar™ package configuration.
- D. Package complies to JEDEC MO-211 variation EA.
- E. This package is tin-lead (SnPb). Refer to the 5 YZA package (drawing 4204151) for lead-free.

NanoStar is a trademark of Texas Instruments.

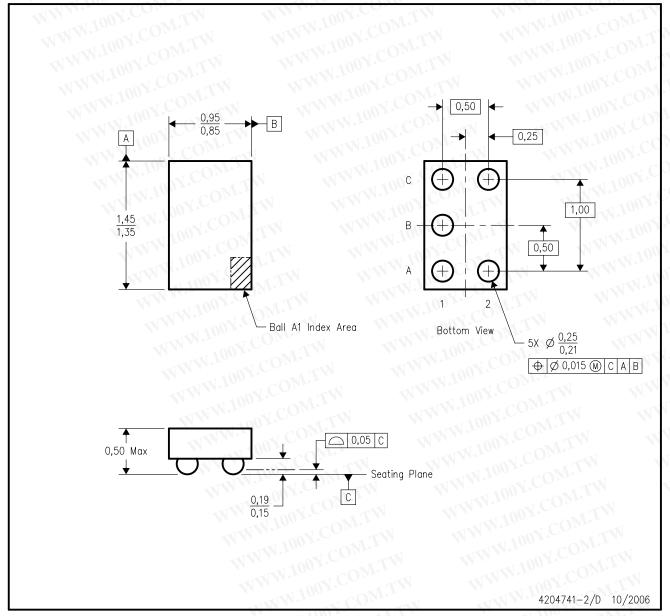
TEXAS INSTRUMENTS www.ti.com 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

YZA (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

NOTES:

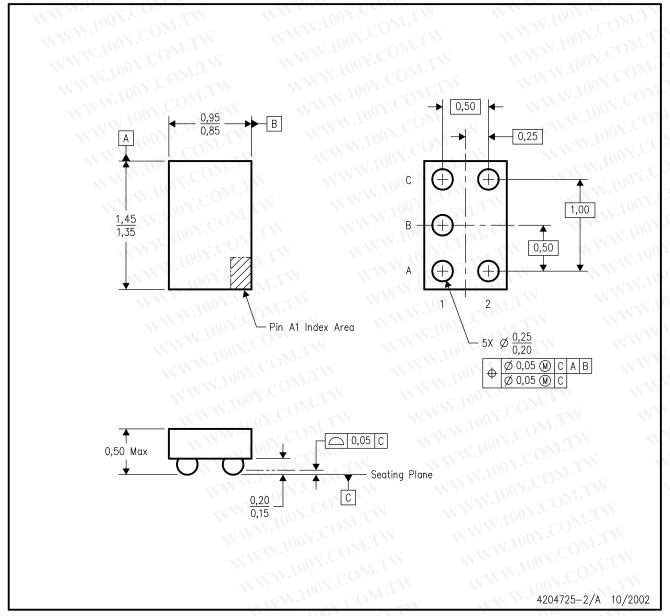

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice. B.
- NanoFree™ package configuration. C.
- D. Package complies to JEDEC MO-211 variation EA.
- This package is lead-free. Refer to the 5 YEA package (drawing 4203167) for tin-lead (SnPb). WWW.100Y.CON

NanoFree is a trademark of Texas Instruments.

YZP (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.


- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- D. This package is lead—free. Refer to the 5 YEP package (drawing 4204725) for tin—lead (SnPb).

NanoFree is a trademark of Texas Instruments.

YEP (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. NanoStar™ package configuration.
- D. This package is tin-lead (SnPb). Refer to the 5 YZP package (drawing 4204741) for lead-free.

NanoStar is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw Copyright © 2006, Texas Instruments Incorporated