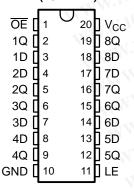
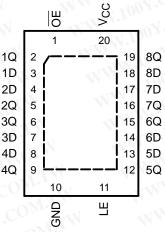


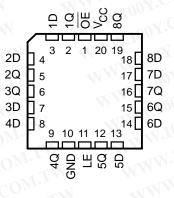

SN54LVC373A, SN74LVC373A OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS


SCAS295S-JANUARY 1993-REVISED MAY 2005


FEATURES


- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 6.8 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})

- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)



SN54LVC373A . . . FK PACKAGE (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The SN54LVC373A octal transparent D-type latch is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC373A octal transparent D-type latch is designed for 1.65-V to 3.6-V V_{CC} operation.

While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

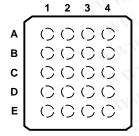
These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS295S-JANUARY 1993-REVISED MAY 2005


DESCRIPTION/ORDERING INFORMATION (CONTINUED)

ORDERING INFORMATION

		ORDERING	SINFORMATION		
T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
N. A.	PDIP – N	Tube of 20	SN74LVC373AN	SN74LVC373AN	
	QFN – RGY	Reel of 1000	SN74LVC373ARGYR	LC373A	
	COIC DW	Tube of 25	SN74LVC373ADW	LVC373A	
	SOIC - DW	Reel of 2000	SN74LVC373ADWR	LVC3/3A	
	SOP - NS	Reel of 2000	SN74LVC373ANSR	LVC373A	
-40°C to 85°C	SSOP – DB	Reel of 2000	SN74LVC373ADBR	LC373A	
-40°C 10 65°C	MAN'TO ON'COMP	Tube of 70	SN74LVC373APW	MALLIONICO	
	TSSOP - PW	Reel of 2000	SN74LVC373APWR	LC373A	
	WW 100Y.	Reel of 250	SN74LVC373APWT	M. 100 r.	
	TVSOP - DGV	Reel of 2000	SN74LVC373ADGVR	LC373A	
	VFBGA – GQN	Deal of 4000	SN74LVC373AGQNR	1.02724	
	VFBGA – ZQN (Pb-free)	Reel of 1000	SN74LVC373AZQNR	LC373A	
	CDIP – J	Tube of 20	SNJ54LVC373AJ	SNJ54LVC373AJ	
-55°C to 125°C	CFP – W	Tube of 85	SNJ54LVC373AW	SNJ54LVC373AW	
	LCCC – FK	Tube of 55	SNJ54LVC373AFK	SNJ54LVC373AFK	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

GQN OR ZQN PACKAGE (TOP VIEW)

TERMINAL ASSIGNMENTS

	1	2	3	4
Α	1Q	ŌĒ	V _{cc}	8Q
В	2D	7D	1D	8D
С	3Q	2Q	6Q	7Q
D	4D	5D	3D	6D
E	GND	4Q	LE	5Q

WWW.100Y.COM.T **FUNCTION TABLE** (EACH LATCH)

	INPUTS	OUTPUT	
ŌĒ	LE	D	Q
ME	H00	Н	Н
L	Н	LC	LW
L	VIL.	X	Q_0
Н	X	X	Z

LOGIC DIAGRAM (POSITIVE LOGIC) DE 1 LE 11 1D 2 1Q

Pin numbers shown are for the DB, DGV, DW, FK, J, N, NS, PW, RGY, and W packages.

To Seven Other Channels

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MM 2100X.	TW W. 1007.	MIN	MAX	UNIT
V _{CC}	Supply voltage range	TW WWW.	-0.5	6.5	V
V _I	Input voltage range ⁽²⁾	MINN. DOV.CO	-0.5	6.5	V
Vo	Voltage range applied to any output in the hi	gh-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the hi	gh or low state (2)(3)	-0.5	$V_{CC} + 0.5$	V
I _{IK}	Input clamp current	V _I < 0	TW	-50	mA
I _{OK}	Output clamp current	V _O < 0	COM	-50	mA
Io	Continuous output current	COM. I WIN TOO	COM.	±50	mA
	Continuous current through V _{CC} or GND	ontinuous current through V _{CC} or GND			
	WWW.	DB package (4)	101.00	70	WV
		DGV package ⁽⁴⁾	COMP	92	
		DW package ⁽⁴⁾	Ing COM	58	
0	Dealers the smeet instruction	GQN/ZQN package ⁽⁴⁾	1007.	78	90044
θ_{JA}	Package thermal impedance	N package ⁽⁴⁾	. OUX.Co.	69	°C/W
		NS package (4)	N. Post CC	60	
		PW package ⁽⁴⁾	W.100	83	
		RGY package ⁽⁵⁾	1007.0	37	
T _{stg}	Storage temperature range	W. LOW COM	-65	150	√√ °C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

⁽⁵⁾ The package thermal impedance is calculated in accordance with JESD 51-5.

SN54LVC373A, SN74LVC373A OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

Recommended Operating Conditions⁽¹⁾

		WW. 1007.00	SN54LVC	373A	SN74LV	C373A	UNIT
		WWW.ICON.COM	MIN	MAX	MIN	MAX	UNII
M.	Supply voltage	Operating	2	3.6	1.65	3.6	V
Vcc	Supply voltage	Data retention only	1.5		1.5	CO1	V
	WWW. ONY.CO. TW	V _{CC} = 1.65 V to 1.95 V	WILL		0.65 × V _{CC}	001.	TIM
/ _{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	Ohr. AM		1.7	MY.C.	V
		V _{CC} = 2.7 V to 3.6 V	2	sT	2	Too C	
	WW. 100Y. COM.T	V _{CC} = 1.65 V to 1.95 V	T.MOD		111	0.35 × V _{CC}	Mor
V _{IL} Low-level input voltage		V _{CC} = 2.3 V to 2.7 V	.Co.	7	MM.	0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	A.COM.	8.0	WW	0.8	C_{O_I}
V _I	Input voltage	1.1.1. A. M. 100	001	5.5	0	5.5	V
V Output voltage	Output voltage	High or low state	0	V _{CC}	0	V _{CC}	V
V _O	Output voltage	3-state	. 0	5.5	0	5.5	OZV
	High-level output current	V _{CC} = 1.65 V	CO	Mr.		-4	
1		$V_{CC} = 2.3 \text{ V}$	100 2	M_{T_T}	-<1	-8	mA
ОН	riigii-ievei output current	$V_{CC} = 2.7 \text{ V}$	11007.	-12		-12	1000
	WWW.	V _{CC} = 3 V	· AOOY.	-24	TW	-24	1100
		V _{CC} = 1.65 V	M.To	CO_{Mr}		4	
1	Low-level output current	$V_{CC} = 2.3 \text{ V}$	JW.100	CON		8	mA
OL	Low-level output current	$V_{CC} = 2.7 \text{ V}$	100	12	LTW _	12	
	WWW.	$V_{CC} = 3 V$	M M.	24	WT	24	N
Δt/Δv	Input transition rise or fall rate	COM		10	DIAT.	10	ns/V
T_A	Operating free-air temperature	OOX.	-55	125	-40	85	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.

SN54LVC373A, SN74LVC373A OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

ONS ONS ON O	V _{CC} 1.65 V to 3.6 V 2.7 V to 3.6 V 1.65 V 2.3 V 2.7 V 3 V 3 V 1.65 V to 3.6 V 2.7 V to 3.7 V	MIN V _{CC} - 0.2 2.2 2.4 2.2	TYP ⁽¹⁾ MAX 0.2	MIN TYP ⁽¹⁾ V _{CC} - 0.2 1.2 1.7 2.2 2.4 2.2	0.2 0.45	UNIT
CONTT	2.7 V to 3.6 V 1.65 V 2.3 V 2.7 V 3 V 3 V 1.65 V to 3.6 V 2.7 V to 3.6 V 1.65 V	2.2 2.4	0.2	1.2 1.7 2.2 2.4	W.100	M.T OV CON .CO
TW ITW VITW ONITW COMITY COMITY	1.65 V 2.3 V 2.7 V 3 V 3 V 1.65 V to 3.6 V 2.7 V to 3.6 V 1.65 V 2.3 V	2.2 2.4	0.2	1.7 2.2 2.4	W.100	0 V 0 V 0 0 N , CO y, CO
M.TW M.TW OM.TW COM.TV COM.TV COM.TV	2.3 V 2.7 V 3 V 3 V 1.65 V to 3.6 V 2.7 V to 3.6 V 1.65 V 2.3 V	2.4	0.2	1.7 2.2 2.4	W.100	
M.TW OM.TW OM.TV COM.TV COM.TV	2.7 V 3 V 3 V 1.65 V to 3.6 V 2.7 V to 3.6 V 1.65 V 2.3 V	2.4	0.2	2.2 2.4	W.100	
M.TW OM.TW OM.TW COM.TV COM.T	3 V 3 V 1.65 V to 3.6 V 2.7 V to 3.6 V 1.65 V 2.3 V	2.4	0.2	2.4	W.100	CON CO Y.C
OM.TW COM.TV COM.TV	3 V 1.65 V to 3.6 V 2.7 V to 3.6 V 1.65 V 2.3 V	400	0.2	150	W.100	4.C
ON.TW COM.TV COM.TV	1.65 V to 3.6 V 2.7 V to 3.6 V 1.65 V 2.3 V	2.2	0.2	2.2	W.100	Y.C'
CONT.T.	2.7 V to 3.6 V 1.65 V 2.3 V	M. 100 X . W. 100 X .	0.2	N MM	W.100	y.C
COM.TV	1.65 V 2.3 V	M. 100X	0.2	N MM	0.45	
COM.T	2.3 V	N. 1007	CO	N WW	0.45	
COM		M. In	· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			O V
COM	271/		1 Cor.	W WY	0.7	V
77 (V)	2.7 V	100	0.4		0.4	
I _{OL} = 24 mA		TY - 10	0.55	In	0.55	
ON COM	3.6 V		±5	TW Y	±5	μΑ
-1 CO	0		CO	T. T	±10	μΑ
001.	3.6 V		±15	M.I.	±10	μΑ
1007.0	201	MAN	100 10	MIM	10	
I _O = 0	3.6 V	WWW	10	TW	10	μΑ
V, GND	2.7 V to 3.6 V	WW	500	CONTIN	500	μА
Will	3.3 V	W	4 12	CO 4	4	pF
V. 100	3.3 V	- 1	5.5 12	5.5		pF
	$I_0 = 0$ V, GND , $T_A = 25^{\circ}$ C.	$\begin{array}{c} 0 \\ 3.6 \text{ V} \\ \hline \\ I_{O} = 0 \\ 3.6 \text{ V} \\ \hline \\ V, \\ \text{GND} \\ \hline \\ 3.3 \text{ V} \\ \hline \\ 3.3 \text{ V} \\ \hline \\ 3.3 \text{ V} \\ \hline \\ T_{A} = 25^{\circ}\text{C}. \end{array}$	0 3.6 V I _O = 0 3.6 V V, GND 2.7 V to 3.6 V 3.3 V 3.3 V 3.3 V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. This applies in the disabled state only.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	V	IN W. ONL.CO. TW	N 1 106	SN54LV	/C373A		4
			V _{CC} =	2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE high	COM.	3.3	-07	3.3		ns
t _{su}	Setup time, data before LE↓	M. 100 . COW. I.	2	700	2	Mir	ns
t _h	Hold time, data after LE↓	WW. 100Y. CONT.TW	2	x 100	2	M	ns

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	William	1003		M.T.	SN74L	VC373A				
		V _{CC} = ± 0.	1.8 V 15 V	V _{CC} = ± 0.	2.5 V .2 V	V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE high	(1)		(1)		3.3		3.3		ns
t _{su}	Setup time, data before LE↓	(1)		(1)		2		2		ns
t _h	Hold time, data after LE↓	(1)		(1)		1.5		1.5		ns

⁽¹⁾ This information was not available at the time of publication.

OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCAS295S-JANUARY 1993-REVISED MAY 2005

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

M.IO	ON COMP.	MAN TO TO THE				W	
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.7 V	V _{CC} = 3 ± 0.3	3.3 V V	UNIT	
WW.	Too. COM.	WWW.ICOV.COM.	MIN MAX	MIN	MAX		
	100 COND	M. M. July O. COM.	8.5	1 1	7.5	20	
^l pd	LE T	MM 100 OCT IN	9.5	1100	8.5	ns	
t _{en}	OE OE	WY QV	8.7	1,0	7.7	ns	
t _{dis}	ŌE	Q CO	8	0.5	7.	ns	

Switching Characteristics

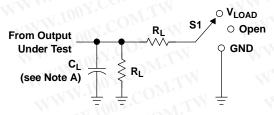
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	1007.	TILL	AN V		1.	SN74L	VC373A			TV 10	
PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} =	$V_{CC} = 2.7 \text{ V}$		3.3 V 3 V	UNIT			
	WWW. 100X.	TIME	MIN MA	X	MIN	MAX	MIN	MAX	MIN	MIN MAX	
	D.	COM	(1)	1)	(1)	(1)	T	7.8	1.5	6.8	ns
t _{pd}	LEN	CONQ	(1)	1)	(1)	(1)	Dir	8.2	2	7.6	
t _{en}	ŌĒ	Q	(1)	1)	(1)	(1)	·Mo.	8.7	1.5	7.7	ns
t _{dis}	ŌĒ	Q TIV	(1)	1)	(1)	(1)	Mo.	7.6	1.5	7	ns
t _{sk(o)}	MMM	ON CONTRACTO	×	M	4400	.001	Cor			1	ns

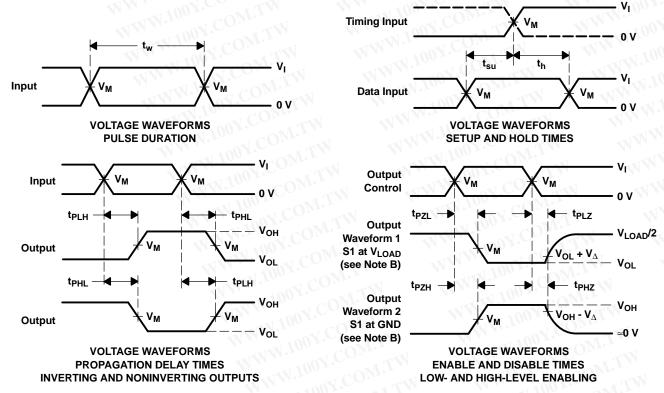
⁽¹⁾ This information was not available at the time of publication.

Operating Characteristics

A = 2	5°C	WW 100 r. CC	TECT	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	· N	
	PARAMETER		TEST CONDITIONS	TYP	TYP	TYP	UNI	
`	Power dissipation capacitance	Outputs enabled	Q 40 MH=	(1)	(1)	46		
S_{pd}	per latch	Outputs disabled	f = 10 MHz	(1)	(1)	3	pF	


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.T


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

1007.0	INF	PUTS		1007	TMO	_	70.
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	V_{Δ}
1.8 V ± 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 kΩ	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Ω = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

1-Nov-2006

PACKAGING INFORMATION

Orderable Device	Status (1)	Package	Package	Pins	Packag	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³
WWW.	TW	Type	Drawing	ov.C	Qty	L.M.	WW 100	T
5962-9757301Q2A	ACTIVE	LCCC	FK	20	01	TBD	- NN - 10	N / A for Pkg Type
5962-9757301QRA	ACTIVE	CDIP	J	20	_1	TBD	A42 SNPB	N / A for Pkg Type
5962-9757301QSA	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type
SN74LVC373ADBLE	OBSOLETE	SSOP	DB	20	V.Co	TBD	Call TI	Call TI
SN74LVC373ADBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373ADBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373ADGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373ADGVRE4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373ADWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373AGQNR	ACTIVE	BGA MI CROSTA R JUNI OR	GQN	20	1000	TBD CC	SNPB	Level-1-240C-UNLIM
SN74LVC373AN	ACTIVE	PDIP	OMN	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LVC373ANE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LVC373ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373ANSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373APWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373APWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373APWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI
SN74LVC373APWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373APWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373APWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373APWT	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373APWTE4	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC373ARGYR	ACTIVE	QFN	RGY	20	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR

PACKAGE OPTION ADDENDUM

1-Nov-2006

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finis	h MSL Peak Temp ⁽³
SN74LVC373ARGYRG4	ACTIVE	QFN	RGY	20	1000	TBD	Call TI	Call TI
SN74LVC373AZQNR	ACTIVE	BGA MI CROSTA R JUNI OR	ZQN	20	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SNJ54LVC373AFK	ACTIVE	LCCC	FK	20	10	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LVC373AJ	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54LVC373AW	ACTIVE	CFP	W	20	011	TBD	A42	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

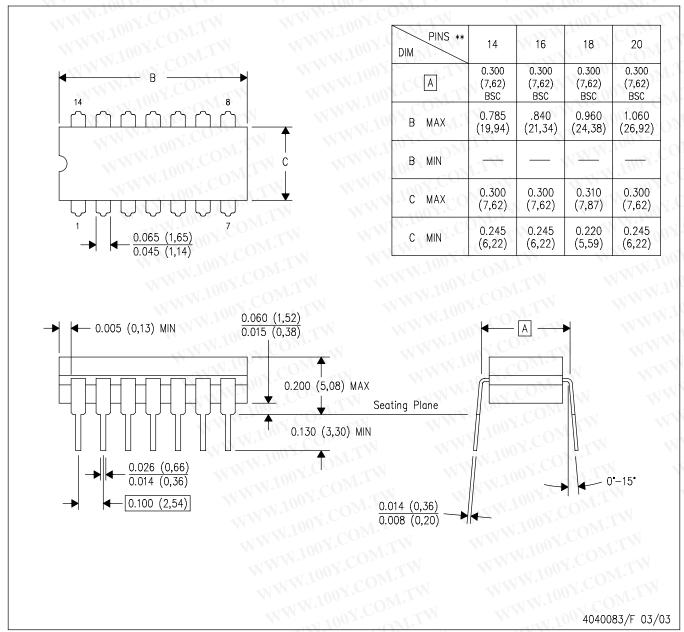
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

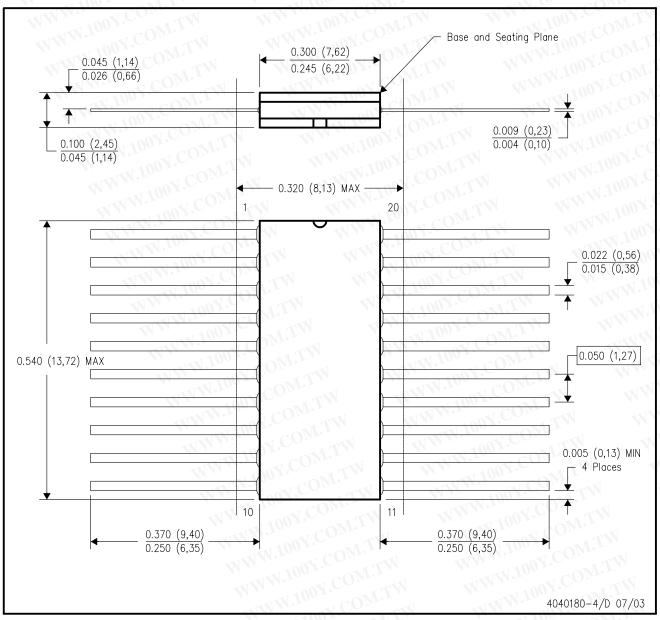

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J(R-GDIP-T**)

CERAMIC DUAL IN-LINE PACKAGE

14 LEADS SHOWN



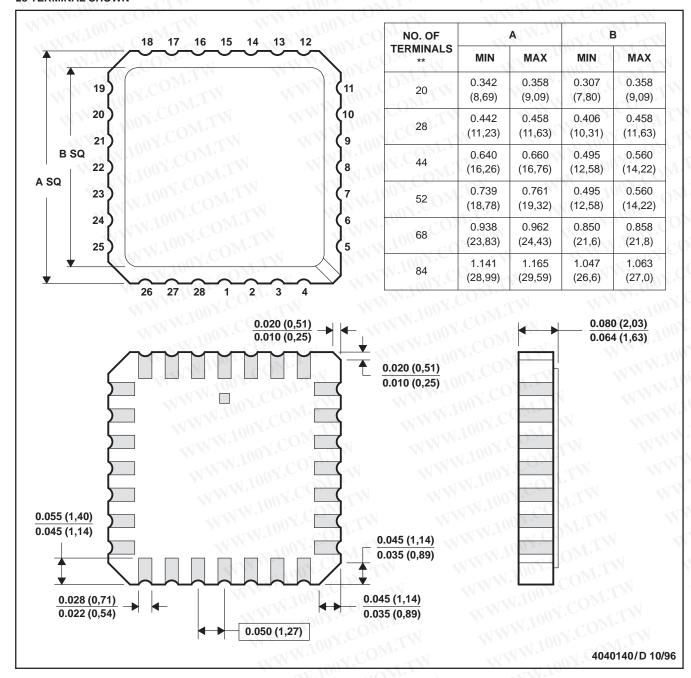
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

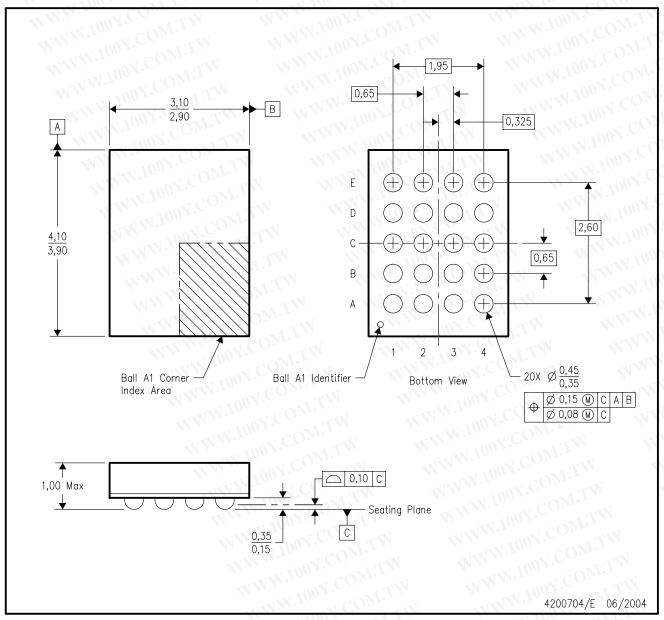
NOTES:


- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- This package can be hermetically sealed with a ceramic lid using glass frit. C.
- Index point is provided on cap for terminal identification only. WWW.100Y.COM.TW
- Falls within Mil-Std 1835 GDFP2-F20

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

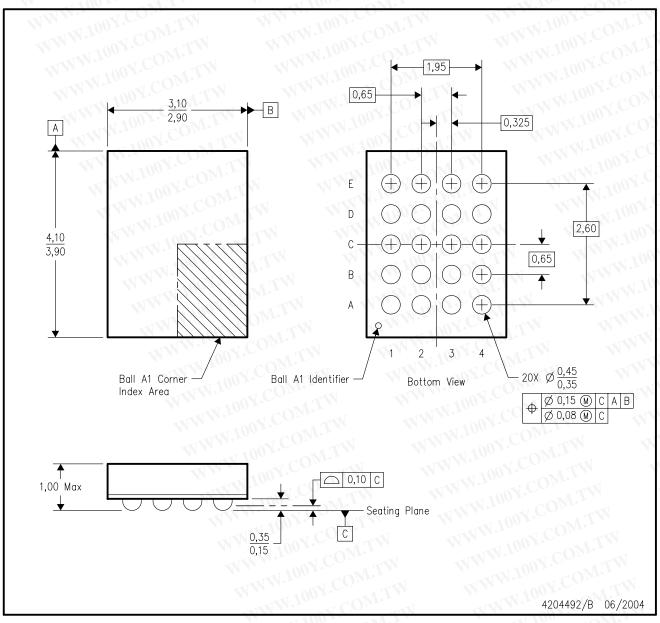

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

GQN (R-PBGA-N20)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

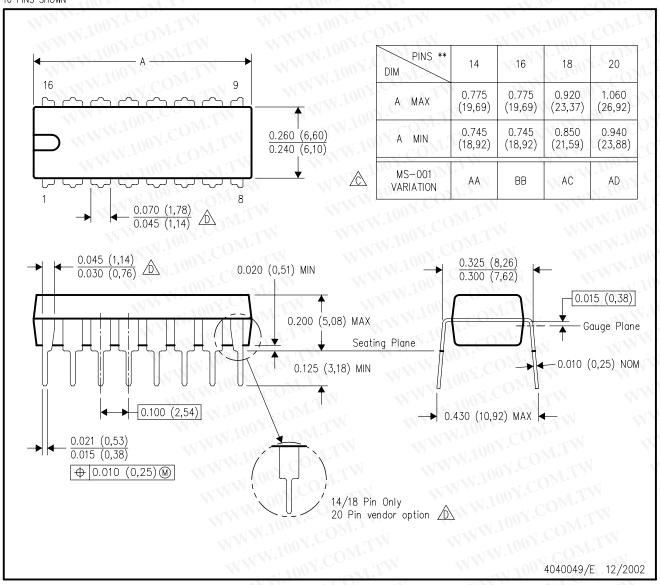

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BC.
- D. This package is tin-lead (SnPb). Refer to the 20 ZQN package (drawing 4204492) for lead-free.

Http://www. 100y. com. tw

ZQN (R-PBGA-N20)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BC.
- D. This package is lead-free. Refer to the 20 GQN package (drawing 4200704) for tin-lead (SnPb).

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\stackrel{\frown}{\Omega}$ The 20 pin end lead shoulder width is a vendor option, either half or full width.

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

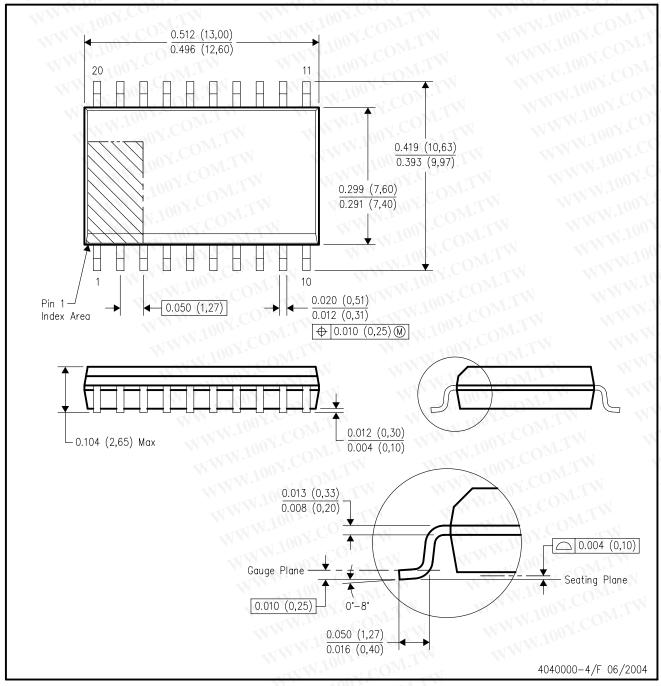
24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

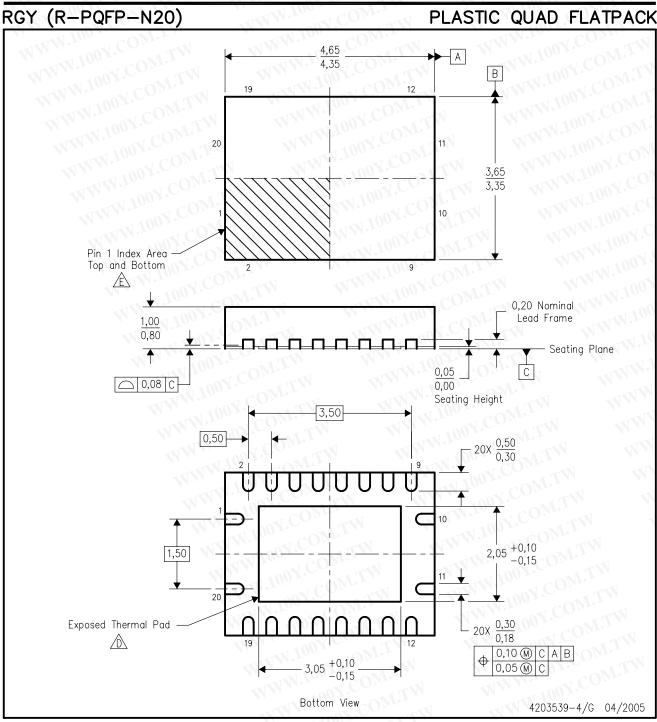
B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.


D. Falls within JEDEC: 24/48 Pins – MO-153

14/16/20/56 Pins – MO-194

DW (R-PDSO-G20)

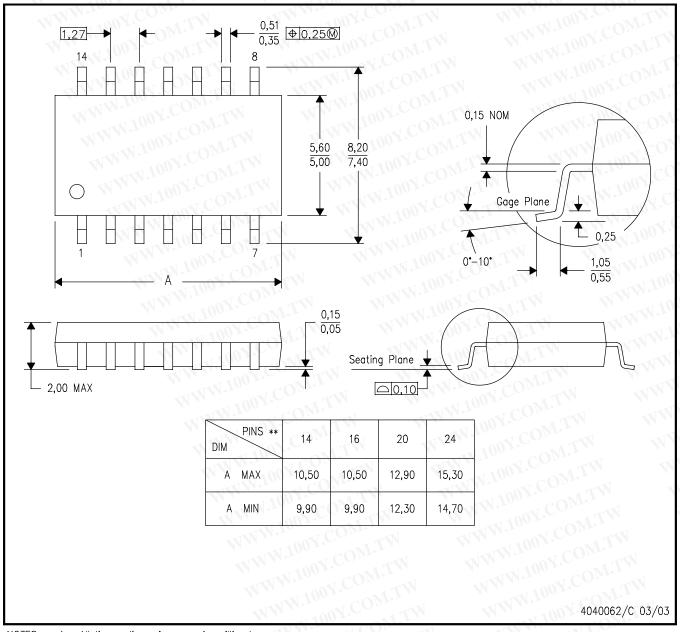

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- F. Package complies to JEDEC MO-241 variation BC.



MECHANICAL DATA

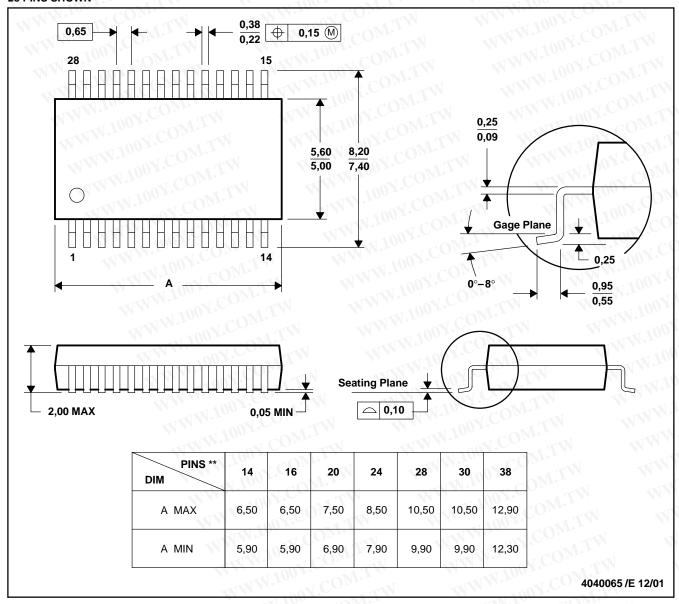
NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DB (R-PDSO-G**)

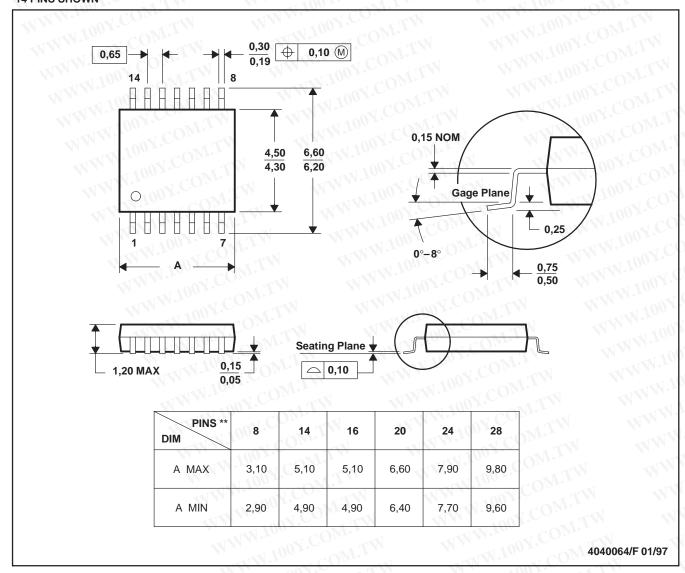
PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.


D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated