

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

SN74LVCH162244A **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCAS545K-OCTOBER 1995-REVISED MARCH 2005

DI DCC OP DCV PACKAGE

FEATURES

•	Member of the Texas Instruments Widebus™ Family	DL, DGG	, OR D (TOP V		ACKAGE
•	Operates From 1.65 V to 3.6 V	1 0E		48] 2 <u>0E</u>
•			2		1A1
•	Inputs Accept Voltages to 5.5 V		3	46	
٠	Max t _{pd} of 4.4 ns at 3.3 V		4		GND
٠	Output Ports Have Equivalent 26- Ω Series	1Y3	5 🔨	21 1 1	1A3
	Resistors, So No External Resistors Are	1Y4	6	43	1A4
	Required	V _{CC}	7	42] V _{CC}
٠	Typical V _{OLP} (Output Ground Bounce) < 0.8 V	2Y1	8] 2A1
	at V _{CC} = 3.3 V, T _A = 25°C	2Y2	9	40	2A2
٠	Typical V _{OHV} (Output V _{OH} Undershoot) > 2 V	GND	10	39] GND
	at V _{CC} = 3.3 V, T _A = 25°C	2Y3	11	38	2A3
٠	I _{off} Supports Partial-Power-Down Mode	2Y4	12		2A4
	Operation		13] 3A1
•	Supports Mixed-Mode Signal Operation on All		14		3A2
	Ports (5-V Input/Output Voltage With		15		GND
	3.3-V V _{cc})		16] 3A3 🔬
•	Bus Hold on Data Inputs Eliminates the Need	.	17		3A4
	for External Pullup/Pulldown Resistors	100	18		V _{cc}
•	Latch-Up Performance Exceeds 250 mA Per		19		4A1
•	JESD 17		20] 4A2
	ESD Protection Exceeds JESD 22		21		GND
•			22 23] 4A3] 4A4
	– 2000-V Human-Body Model (A114-A)		23		3 <u>0</u> E
	– 200-V Machine Model (A115-A)	40E	24	25] 30E
	– 1000-V Charged-Device Model (C101)		Y.	M	
D	ESCRIPTION/ORDERING INFORMATION				
Th	is 16-bit buffer/driver is designed for 1.65-V to 3.6-V V _{CC} operation.				
	00 1				

DESCRIPTION/ORDERING INFORMATION

The SN74LVCH162244A is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs.

(OL) inputs.				
		ORDERING I	NFORMATION	
T _A	PAG	CKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DL		SN74LVCH162244ADL	1.1/01/4000444
4000 to 0500	550P - DL	Tape and reel	SN74LVCH162244ADLR	- LVCH162244A
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74LVCH162244AGR	LVCH162244A
	TVSOP – DGV	Tape and reel	SN74LVCH162244AVR	LN2244A

ORDERING INFORMATION

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at (1) WWW.100Y.C www.ti.com/sc/package. WWW.100Y.COM.T

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SN74LVCH162244A **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCAS545K-OCTOBER 1995-REVISED MARCH 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

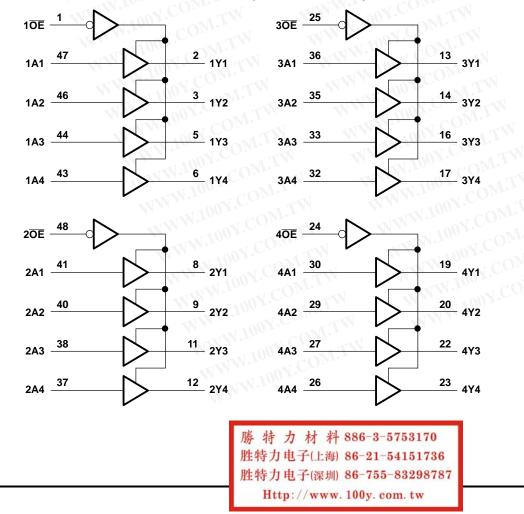
The outputs, which are designed to sink up to 12 mA, include equivalent 26-Ω resistors to reduce overshoot and undershoot.

-Ü

TEXAS INSTRUMENTS

www.ti.com

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.


This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

FUNCTION TABLE (EACH 4-BIT BUFFER) INPUTS OUTPUT Υ OE Α Н н L L L L H. Х Ζ

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range	.0M	-0.5	6.5	V
VI	Input voltage range ⁽²⁾	ON.TY	-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high or low state ⁽²⁾⁽³⁾	V.COM. WW	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0	W	-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current	All	±50	mA	
	Continuous current through each V _{CC} or GND	N. CONTRA	W	±100	mA
	W.1002. ONLY	DGG package		70	ALCC
θ_{JA}	Package thermal impedance ⁽⁴⁾	DGV package	58		°C/W
		DL package		63	
T _{stg}	Storage temperature range	W.L. COM.	-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. (2)

(3)The value of V_{CC} is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

	W 100	N. TW W. 1003.	MIN	MAX	UNIT	
V	Supply voltage	Operating	1.65	3.6	V	
V _{CC}	Supply voltage	Data retention only	1.5	-	V	
	W.I	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		WIT	
VIH	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
	WW	V _{CC} = 1.65 V to 1.95 V	0.3	$5 \times V_{CC}$	W	
V _{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V	CONT	0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
VI	Input voltage	NW.CO.T.W WWW	0	5.5	V	
	Output welling and	High or low state	0	V _{CC}	V	
Vo	Output voltage	3-state	N.10 0.0M	5.5	V	
	4	V _{CC} = 1.65 V	N 1001.	-2		
	I Pate la sette de comente	V _{CC} = 2.3 V	1001.00	-4	N	
I _{OH}	High-level output current	V _{CC} = 2.7 V	NN. NO. CC	-8	mA	
		V _{CC} = 3 V	W.100	-12		
		V _{CC} = 1.65 V	1001.0	2	$\mathcal{I}_{\mathcal{M}}$	
	Level and a deal and a second of	V _{CC} = 2.3 V	NWWW. OOX.	4		
I _{OL}	Low-level output current	V _{CC} = 2.7 V	WW.Iv	8	mA	
		$V_{CC} = 3 V$		12		
$\Delta t/\Delta v$	Input transition rise or fall rate	WWWWWWWWWWWWWWWW		10	ns/V	
T _A	Operating free-air temperature	WWW.P. COM.	-40	85	°C	

(1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

> 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

SN74LVCH162244A **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCAS545K-OCTOBER 1995-REVISED MARCH 2005

Electrical Characteristics

PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP ⁽¹⁾ MAX	UNIT
W.100	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} – 0.2	
	I _{OH} = -2 mA	1.65 V	1.2	M. L
	DY.COMMENTER MINING 100Y.CC	2.3 V	1.7	T.M
VOH	$I_{OH} = -4 \text{ mA}$	2.7 V	2.2	V
	$I_{OH} = -6 \text{ mA}$	3 V	2.4	OM.
	$I_{OH} = -8 \text{ mA}$	2.7 V	2	Mon
	$I_{OH} = -12 \text{ mA}$	3 V	2	
	I _{OL} = 100 μA	1.65 V to 3.6 V	0.2	CO.
	$I_{OL} = 2 \text{ mA}$	1.65 V	0.45	TCO
	NT NT	2.3 V	0.7	1.
V _{OL}	I _{OL} = 4 mA	2.7 V	0.4	V
	I _{OL} = 6 mA	3 V	0.55	N.
	I _{OL} = 8 mA	2.7 V	0.6	100 -
	I _{OL} = 12 mA	3 V	0.8	1001
I	V ₁ = 0 to 5.5 V	3.6 V	±5	μA
	V ₁ = 0.58 V	1.65 V	(2)	N. 2
	V _I = 1.07 V	1.65 V	(2)	W.10
	V ₁ = 0.7 V	2.3 V	45	1
I _{I(hold)}	V _I = 1.7 V	2.3 V	-45	μA
	V ₁ = 0.8 V	3 V	75	NW
	V ₁ = 2 V	3 V	-75	VI
	$V_{\rm I} = 0$ to 3.6 V ⁽³⁾	3.6 V	±500	
I _{off}	$V_{\rm I}$ or $V_{\rm O}$ = 5.5 V	0	±10	μA
I _{OZ}	$V_0 = 0$ to 5.5 V	3.6 V	±10	μA
	$V_1 = V_{CC}$ or GND	2.614	20	
I _{CC}	$\frac{1}{3.6 \text{ V} \le \text{V}_1 \le 5.5 \text{ V}^{(4)}} _{\text{O}} = 0$	3.6 V	20	μA
ΔI_{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	2.7 V to 3.6 V	500	μA
Ci	$V_{I} = V_{CC} \text{ or } GND$	3.3 V	5.5	pF
Co	$V_{O} = V_{CC}$ or GND	3.3 V	6	pF

勝特力材料 886-3-5753170

胜特力电子(上海) 86-21-54151736

胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

1

TEXAS

INSTRUMENTS www.ti.com

(1)

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. This information was not available at the time of publication. (2) (3)

This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

(4) This applies in the disabled state only.

Switching Characteristics

PARAMETER	FROM	FROM TO				$\begin{array}{c} V_{CC} = 2.5 \ V \\ \pm \ 0.2 \ V \end{array} \qquad V_{CC} = 2.7 \ V \\ \end{array}$		2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	1	10.2	1	6.4	1	5.6	1.1	4.4	ns
t _{en}	ŌĒ	Y	1	14.8	C 1	8.2	1	6.9	1	5.5	ns
t _{dis}	ŌE	Y	1	12.3	1	7.1	1	6.8	1.8	6.3	ns

4

SCAS545K-OCTOBER 1995-REVISED MARCH 2005

Operating Characteristics

	PARAMETER	WWW.L	TEST	V _{CC} = 1.8 V	$V_{CC} = 2.5 V$	$V_{CC} = 3.3 V$	UNIT
FARAMETER			CONDITIONS	TYP	ТҮР	TYP	
	Power dissipation capacitance	Outputs enabled	£ 10 MU	(1)	(1)	35	~
pd	per buffer/driver	Outputs disabled	f = 10 MHz	(1)	(1)	4	pF

100Y.COM.TW

WY.COM.TW

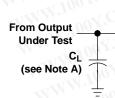
WW.100Y.COM.TW

(1) This information was not available at the time of publication. WWW.100Y.COM.TW WWW.100Y.C

WWW.100Y.COM.T

WWW.100Y.C

WWW.100Y.COM.TW

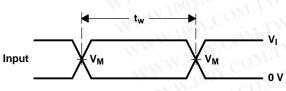

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

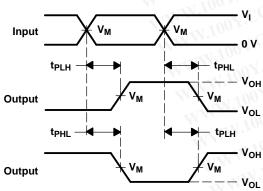
SCAS545K-OCTOBER 1995-REVISED MARCH 2005

PARAMETER MEASUREMENT INFORMATION

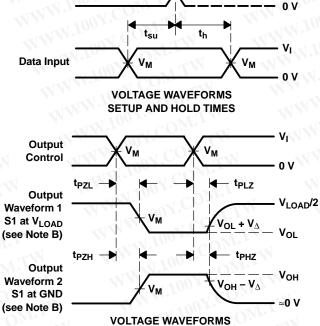
RL S1 Open GND RL


TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	VLOAD
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT


3

Vcc	INPUTS			100 1.	M.		N A
	V	t _r /t _f	VM	V _{LOAD}	CL	RL	V _Δ
$1.8 V \pm 0.15 V$	V _{cc}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 kΩ	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	Vcc	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
$\textbf{3.3 V} \pm \textbf{0.3 V}$	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V


Timing Input

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

Vм

ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

勝特力材料 886-3-5753170
 胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
Http://www. 100y. com. tw

24-Feb-2006

PACKAGING INFORMATION

TRUMENTS www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74LVCH162244ADLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVCH162244ADLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVCH162244AGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVCH162244AVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH162244ADGGR	OBSOLETE	TSSOP	DGG	48		TBD	Call TI	Call TI
SN74LVCH162244ADGVR	OBSOLETE	TVSOP	DGV	48	100 .	TBD	Call TI	Call TI
SN74LVCH162244ADL	ACTIVE	SSOP	DL 🔨	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH162244ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH162244AGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCH162244AVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

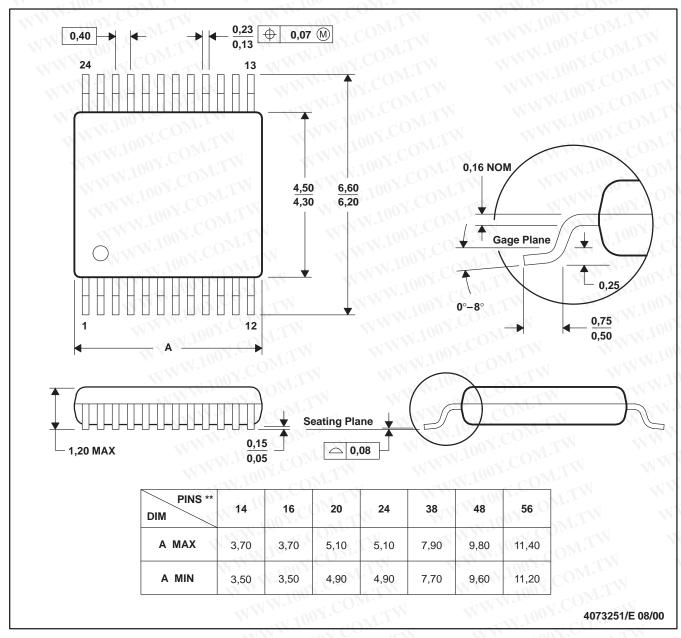
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


Addendum-Page 1

MECHANICAL DATA

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

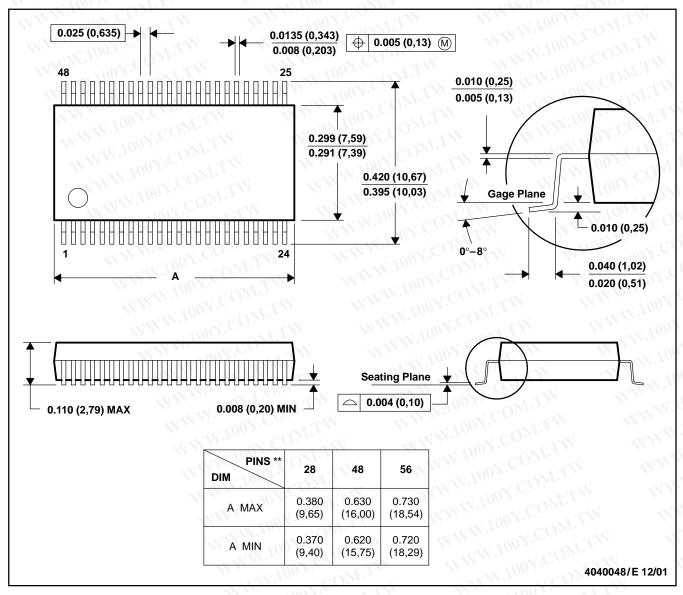
PLASTIC SMALL-OUTLINE

DGV (R-PDSO-G**) 24 PINS SHOWN

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
 - D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins - MO-194

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

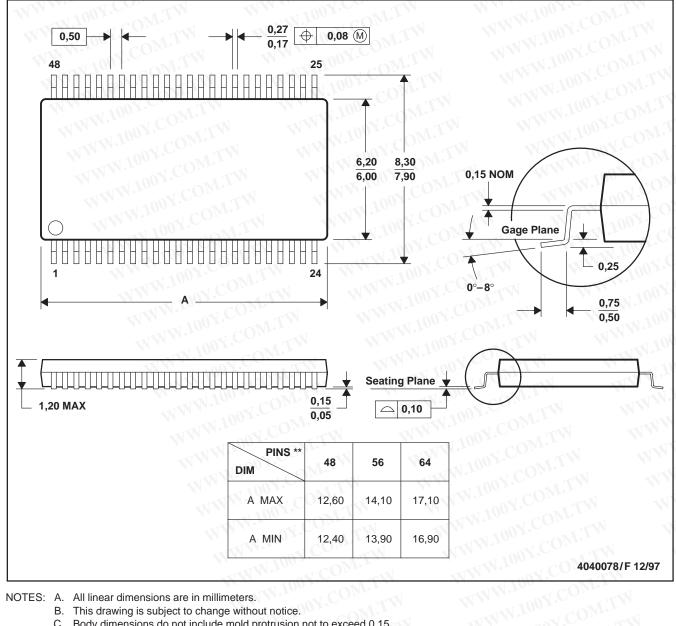
PLASTIC SMALL-OUTLINE PACKAGE

DL (R-PDSO-G**) 48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

WWW.100Y.COM. WWW.100Y.COM.T 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

IEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

IMPORTANT NOTICE

WWW.100Y.COM Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

勝特力材料 886-3-5753170
胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
Http://www.100y.com.tw

Texas Instruments