特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SUPPLY-VOLTAGE SUPERVISOR

SLVS220A - JULY 1999 - REVISED NOVEMBER 1999

- Adjustable Sense Voltage With Two **External Resistors**
- Adjustable Hysteresis of Sense Voltage
- Wide Operating Supply-Voltage Range . . . 1.8 V to 40 V
- **Wide Operating-Temperature** Range . . . -40°C to 85°C
- Low Power Consumption (I_{CC} = 0.6 mA TYP, $V_{CC} = 40 \text{ V}$
- **Minimum External Components**
- **Package Options Include Plastic** Small-Outline (PS) and Thin Shrink Small-Outline (PW) Packages and Standard DIP (P)

P. PS. OR PW PACKAGE (TOP VIEW) RESET SENSE [7 NC NC ∏ 3 6 NC GND [] Vcc 5

NC - No internal connection

description

The TL7700 is a bipolar integrated circuit designed for use as a reset controller in microcomputer and microprocessor systems. The SENSE voltage can be set to any value greater than 0.5 V using two external resistors. The hysteresis value of the sense voltage also can be set by the same resistors. The device includes a precision voltage reference, fast comparator, timing generator, and output driver, so it can generate a power-on reset signal in a digital system.

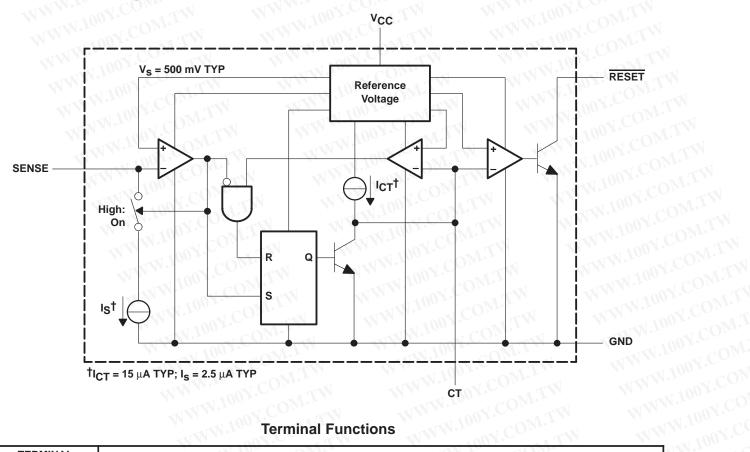
The TL7700 has an internal 1.5-V temperature-compensated voltage reference from which all function blocks are supplied. Circuit function is very stable, with supply voltage in the 1.8-V to 40-V range. Minimum supply current allows use with ac line operation, portable battery operation, and automotive applications.

The TL7700C is characterized for operation from -40°C to 85°C.

AVAILABLE OPTIONS

W 10	OM.	PACKAGED DEVICES			
TA	PLASTIC DIP (P)	PLASTIC SMALL OUTLINE (PS)	PLASTIC THIN SHRINK SMALL OUTLINE (PW)		
-40°C to 85°C	TL7700CP	TL7700CPS	TL7700CPW		

PS and PW packages are available taped and reeled. Add the suffix R to device type (e.g., TL7700CPSR).



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

functional block diagram

Terminal Functions

TERM	IINAL	TINN TO THE COMPTON T			
NAME	NO.	DESCRIPTION			
СТ	1	Timing capacitor connection. This terminal sets the $\overline{\text{RESET}}$ output pulse duration (t_{p0}) . It is connected internally to a 15- μ A constant-current source. There is a limit on the switching speed of internal elements; even if CT is set to 0, response speeds remain at approximately 5 to 10 μ s. If CT is open, the device can be used as an adjustable-threshold noninverting comparator. If CT is low, the internal output-stage comparator is active and the $\overline{\text{RESET}}$ output transistor is on. An external voltage must not be applied to this terminal due to the internal structure of the device. Therefore, drive the device using an open-collector transistor, FET, or 3-state buffer (in the low-level or high-impedance state).			
GND	4	Ground. Keep this terminal as low impedance to reduce circuit noise.			
NC	3, 6, 7	No internal connection			
RESET	8	Reset output. This terminal can be connected directly to a system that resets in the active-low state. A pullup resistor usually is required because the output is an npn open-collector transistor. An additional transistor should be connected when the active-high reset or higher output current is required.			
SENSE	2	Voltage sense. This terminal has a threshold level of 500 mV. The sense voltage and hysteresis can be set at the same time when the two voltage-dividing resistors are connected. The reference voltage is temperature compensated to inhibit temperature drift in the threshold voltage within the operating temperature range.			
VCC	5	Power supply. This terminal is used in an operating-voltage range of 1.8 V to 40 V.			
		WWW.100X.COM.TW			

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TL7700 SUPPLY-VOLTAGE SUPERVISOR

SLVS220A - JULY 1999 - REVISED NOVEMBER 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	.00	41 V
Sense input voltage range, V _S		
Output voltage, VOH (off state)		41 V
Output current, I _{OL} (on state)		
Package thermal impedance, θ _{JA} (see Notes		
M. M. M. Too COM.	PS package	95°C/W
	PW package	149°C/W
Storage temperature range, T _{sta}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the network ground terminal.
 - 2. Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

COM.	TIMM.TO COM	MIN	NOM MAX	UNIT
Supply voltage, V _{CC}	M. 100 COM.	1.8	40	V
Low-level output current, IOL	WW. 100X.	N.	3	mA
Operating free-air temperature, TA	MALLIONICO	-40	85	°C

electrical characteristics, $V_{CC} = 3 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Vs	SENSE input voltage	DOX.	IN M. 1001.	495	500	505	mV
		$T_A = -40$ °C to 85°C		490	490 5	510	10 mv
Is	SENSE input current	V 04V	WWW.	2	2.5	3	V., A
		$V_S = 0.4 \text{ V}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	$T_A = -40$ °C to 85°C	1.5		3.5	μΑ
Icc	Supply current	$V_{CC} = 40 \text{ V},$	$V_S = 0.6 \text{ V}$, No load	Mos	0.6	1	mA
VOL	Low-level output voltage	I _{OL} = 1.5 mA	WITT		TIN	0.4	V
		$I_{OL} = 3 \text{ mA}$	COMP.	WY.CO		0.8	V
IOH	High-level output current	V _{OH} = 40 V,	$V_S = 0.6 \text{ V}, \qquad T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	~√1 C)Mr.	1	μΑ
ICT	Timing-capacitor charge current	V _S = 0.6 V	. The same of the	11	15	19	μΑ

switching characteristics, V_{CC} = 3 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
t _{pi}	SENSE pulse duration	C _T = 0.01 μF	2	μs
tpo	Output pulse duration	$C_T = 0.01 \mu\text{F}$	0.5 1 1.5	ms
t _r	Output rise time	$C_T = 0.01 \mu\text{F}, R_L = 2.2 k\Omega, C_L = 100 \text{pF}$	15	μs
tf	Output fall time	$C_T = 0.01 \mu\text{F}, R_L = 2.2 k\Omega, C_L = 100 \text{pF}$	0.5	μs
tpd	Propagation delay time, SENSE to output	C _T = 0.01 μF	10	μs

PARAMETER MEASUREMENT INFORMATION

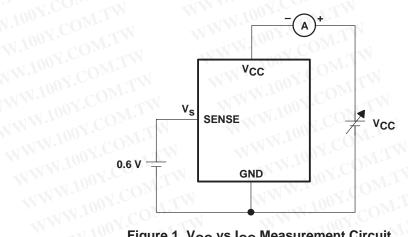


Figure 1. V_{CC} vs I_{CC} Measurement Circuit

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

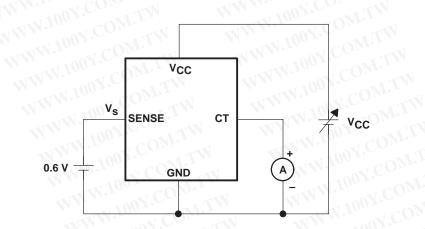


Figure 2. V_{CC} vs I_{CT}

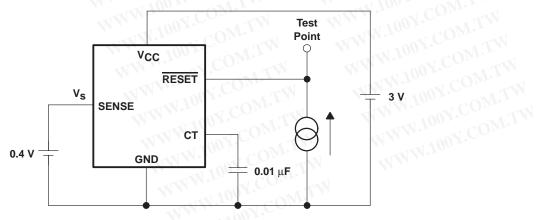


Figure 3. IOI vs VOI

PARAMETER MEASUREMENT INFORMATION

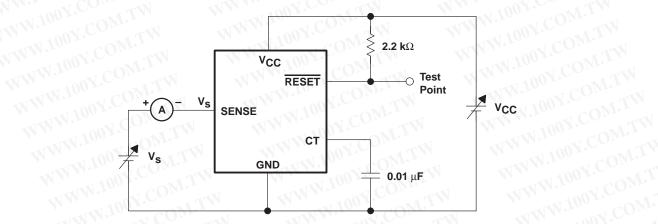
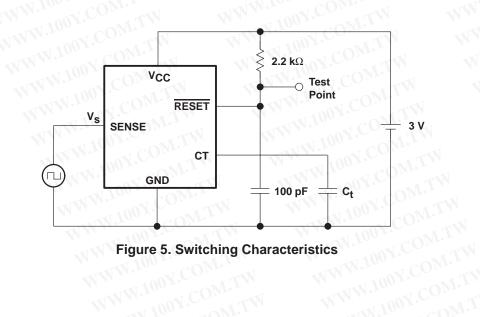
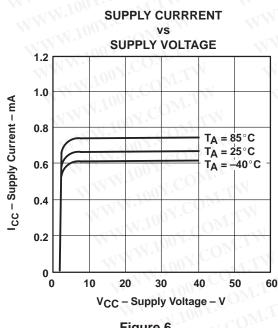
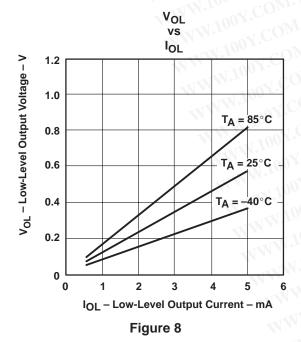


Figure 4. V_S, I_S Characteristics


Figure 5. Switching Characteristics WWW.100Y.CON

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TYPICAL CHARACTERISTICS[†]

TIMING-CAPACITOR CHARGE CURRENT

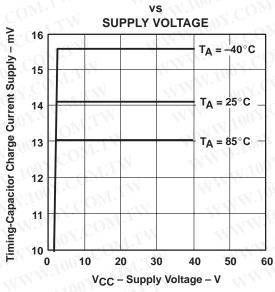


Figure 7

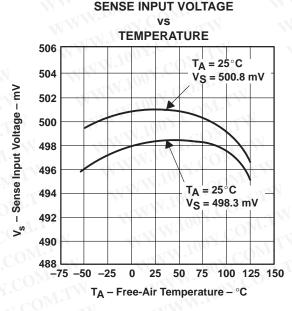
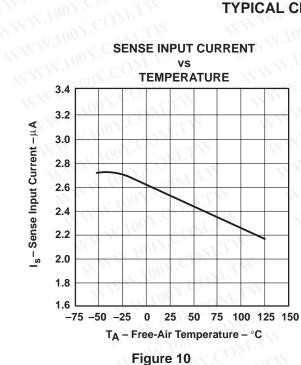



Figure 9

[†] Data at high and low temperatures are applicable only within the recommended operating conditions.

TYPICAL CHARACTERISTICS[†]

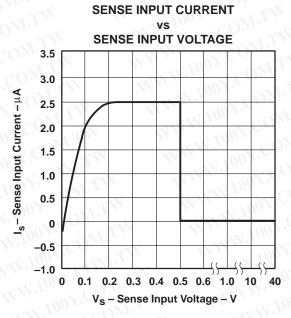


Figure 11

OUTPUT PULSE DURATION

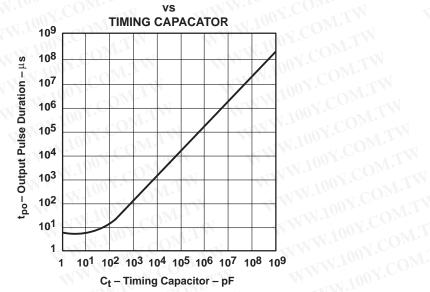


Figure 12 WWW.100Y.COM.TW

101 102 103 104 105 106 107 108 109 Ct - Timing Capacitor - pF

[†] Data at high and low temperatures are applicable only within the recommended operating conditions.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TYPICAL CHARACTERISTICS

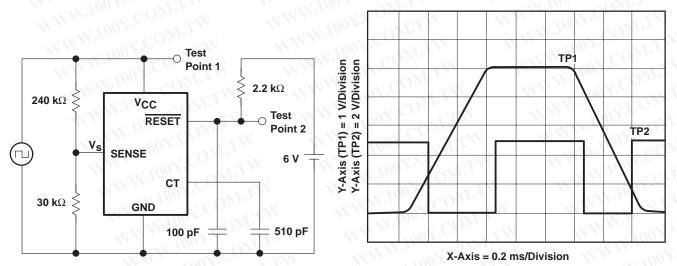


Figure 13. V_{CC} vs Output Test Circuit 1

Figure 14. V_{CC} vs Output Waveform 1

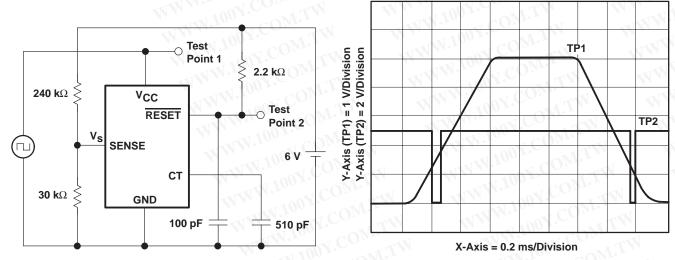


Figure 15. V_{CC} vs Output Test Circuit 2

Figure 16. V_{CC} vs Output Waveform 2

WWW.100Y.COM.TW

TYPICAL CHARACTERISTICS

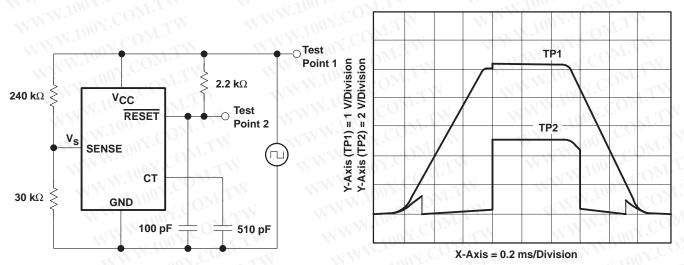
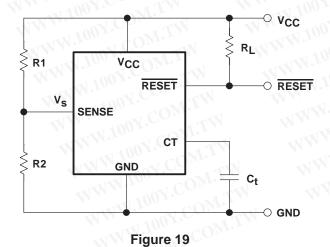


Figure 17. V_{CC} vc Output Test Circuit 3

Figure 18. V_{CC} vs Output Waveform 3

detailed description

sense-voltage setting


The sense voltage, V_s , of the TL7700 typically is 500 mV. By using two external resistors, the circuit designer can obtain any sense voltage over 500 mV. In Figure 19, the sensing voltage, V's, is calculated as:

$$V's = V_S \times (R1 + R2)/R2$$

Where

$$V_S = 500 \text{ mV}$$
, typically at $T_A = 25^{\circ}\text{C}$

At room temperature, V_s has a variation of 500 mV \pm 5 mV. In the basic circuit shown in Figure 19, variations of [\pm 5 \times (R1 + R2)/R2] mV are superimposed on V_s .

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

sense-voltage hysteresis setting

If the sense voltage, V_S , does not have hysteresis in it and the voltage on the sensing line contains ripples, the resetting of TL7700 will be unstable. Hysteresis is added to the sense voltage to prevent such problems. As shown in Figure 20, the hysteresis, V_{hyS} , is added, and the value is determined as:

$$V_{hys} = I_s \times R1$$

Where:

$$I_S = 2.5 \mu A$$
, typically at $T_A = 25^{\circ} C$

At room temperature, I_S has variations of $2.5~\mu A \pm 0.5~\mu A$. Therefore, in the circuit shown in Figure 19, V_{hys} has variations of ($\pm 0.5 \times R1$) μV . In circuit design, it is necessary to consider the voltage-dividing resistor tolerance and temperature coefficient in addition to variations in V_s and V_{hys}.

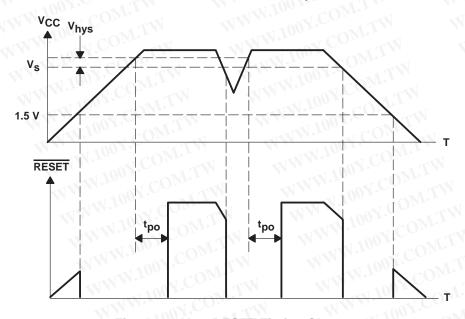


Figure 20. V_{CC}-RESET Timing Chart

output pulse-duration setting

Constant-current charging starts on the timing capacitor when the sensing-line voltage reaches the $\overline{\text{TL7700}}$ sense voltage. When the capacitor voltage exceeds the threshold level of the output drive comparator, $\overline{\text{RESET}}$ changes from a low to a high level. The output pulse duration is the time between the point when the sense-pin voltage exceeds the threshold level and the point when the $\overline{\text{RESET}}$ output changes from a low level to a high level. When the TL7700 is used for system power-on reset, the output pulse duration, t_{po} , must be set longer than the power rise time. The value of t_{no} is:

$$t_{po} = C_t \times 10^5$$
 seconds

Where:

Ct is the timing capacitor in farads

There is a limit on the device response speed. Even if $C_t = 0$, t_{po} is not 0, but approximately 5 μ s to 10 μ s. Therefore, when the TL7700 is used as a comparator with hysteresis, without connecting C_t , switching speeds $(t_t/t_f, t_{po}/t_{pd}, \text{ etc.})$ must be considered.

