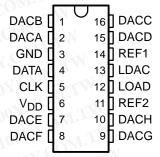
TLC5628C, TLC5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS


SLAS089D - NOVEMBER 1994 - REVISED SEPTEMBER 1996

- Eight 8-Bit Voltage Output DACs
- 5-V Single-Supply Operation
- Serial Interface
- High-Impedance Reference Inputs
- Programmable 1 or 2 Times Output Range
- Simultaneous-Update Facility
- Internal Power-On Reset
- Low Power Consumption
- Half-Buffered Output

applications

- Programmable Voltage Sources
- Digitally-Controlled Amplifiers/Attenuators
- Mobile Communications
- Automatic Test Equipment
- Process Monitoring and Control
- Signal Synthesis

N OR DW PACKAGE (TOP VIEW)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

description

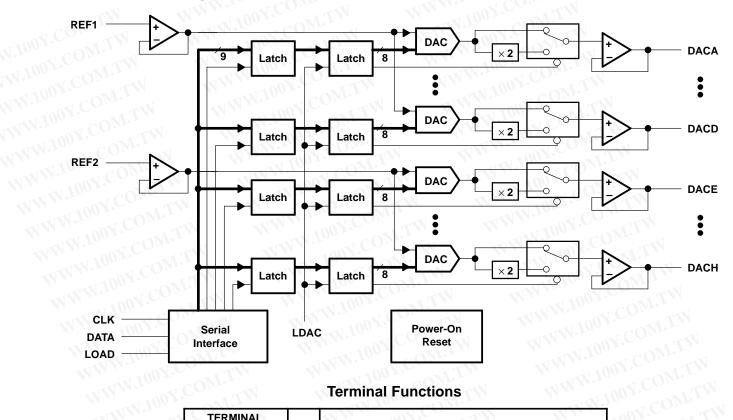
The TLC5628C and TLC5628I are octal 8-bit voltage output digital-to-analog converters (DACs) with buffered reference inputs (high impedance). The DACs produce an output voltage that ranges between either one or two times the reference voltages and GND and are monotonic. The device is simple to use, running from a single supply of 5 V. A power-on reset function is incorporated to ensure repeatable start-up conditions.

Digital control of the TLC5628C and TLC5628I are over a simple 3-wire serial bus that is CMOS compatible and easily interfaced to all popular microprocessor and microcontroller devices. The 12-bit command word comprises 8 bits of data, 3 DAC select bits, and a range bit, the latter allowing selection between the times 1 or times 2 output range. The DAC registers are double buffered, allowing a complete set of new values to be written to the device, then all DAC outputs are updated simultaneously through control of the LDAC terminal. The digital inputs feature Schmitt triggers for high-noise immunity.

The 16-terminal small-outline (D) package allows digital control of analog functions in space-critical applications. The TLC5628C is characterized for operation from 0°C to 70°C. The TLC5628I is characterized for operation from –40°C to 85°C. The TLC5628C and TLC5628I do not require external trimming.

AVAILABLE OPTIONS

PACKAGE						
CONTA	SMALL OUTLINE (DW)	PLASTIC DIP (N)				
0°C to 70°C	TLC5628CDW	TLC5628CN				
-40°C to 85°C	TLC5628IDW	TLC5628IN				


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TLC5628C, TLC5628I **OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS**

SLAS089D - NOVEMBER 1994 - REVISED SEPTEMBER 1996

functional block diagram

Terminal Functions

TERMINAL NAME N	lo. 1/0	DESCRIPTION
CLK	5 I	Serial interface clock, data enters on the negative edg
DACA	2 0	DACA analog output
DACB	1 0	DACB analog output
DACC 1	6 O	DACC analog output
DACD 1	5 O	DACD analog output
DACE	7 0	DACE analog output
DACF	8 O	DACF analog output
DACG	9 O	DACG analog output
DACH 1	0 0	DACH analog output
DATA	4	Serial interface digital data input
GND	3 I	Ground return and reference terminal
LDAC 1	3	DAC-update latch control
LOAD 1	2 1	Serial interface load control
REF1 1	4 l	Reference voltage input to DACA
REF2 1	10 T	Reference voltage input to DACB
V_{DD}	6	Positive supply voltage

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W.100Y.COM.

WWW.100Y.COM.TW

detailed description

The TLC5628 is implemented using eight resistor-string DACs. The core of each DAC is a single resistor with 256 taps, corresponding to the 256 possible codes listed in Table 2. One end of each resistor string is connected to the GND terminal and the other end is fed from the output of the reference input buffer. Monotonicity is maintained by use of the resistor strings. Linearity depends upon the matching of the resistor elements and upon the performance of the output buffer. Because the inputs are buffered, the DACs always present a high-impedance load to the reference sources. There are two input reference terminals; REF1 is used for DACA through DACD and REF2 is used by DACE through DACH.

Each DAC output is buffered by a configurable-gain output amplifier, which can be programmed to times 1 or times 2 gain.

On powerup, the DACs are reset to CODE 0.

Each output voltage is given by:

 $V_O(DACA|B|C|D|E|F|G|H) = REF \times \frac{CODE}{256} \times (1 + RNG bit value)$

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

where CODE is in the range 0 to 255 and the range (RNG) bit is a 0 or 1 within the serial control word.

data interface

With LOAD high, data is clocked into the DATA terminal on each falling edge of CLK. Once all data bits have been clocked in, LOAD is pulsed low to transfer the data from the serial input register to the selected DAC as shown in Figure 1. When LDAC is low, the selected DAC output voltage is updated and LOAD goes low. When LDAC is high during serial programming, the new value is stored within the device and can be transferred to the DAC output at a later time by pulsing LDAC low as shown in Figure 2. Data is entered most significant bit (MSB) first. Data transfers using two 8-clock cycle periods are shown in Figures 3 and 4.

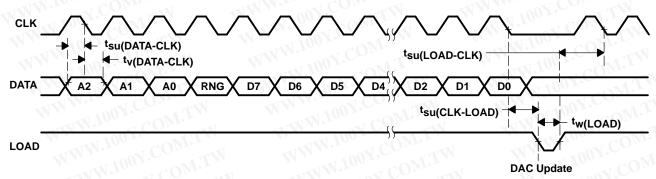


Figure 1. LOAD-Controlled Update (LDAC = Low)

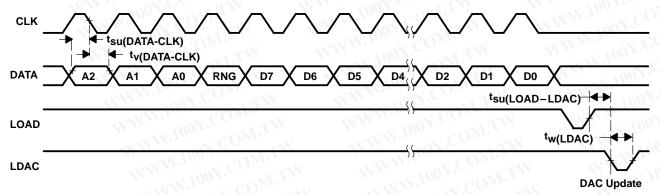


Figure 2. LDAC-Controlled Update

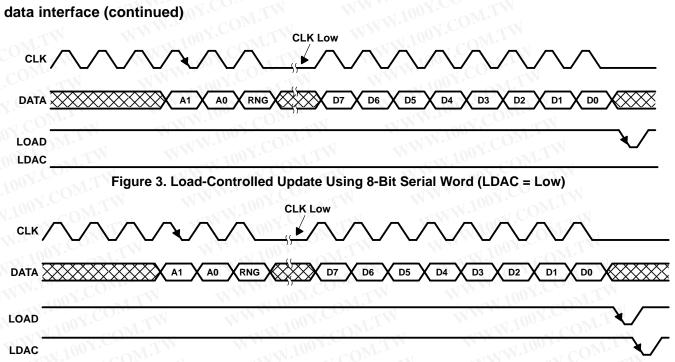


Figure 4. LDAC-Controlled Update Using 8-Bit Serial Word WWW.100Y.COM.TW

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

data interface (continued)

Table 1 lists the A1 and A0 bits and the selection of the updated DACs. The RNG bit controls the DAC output range. When RNG = low, the output range is between the applied reference voltage and GND, and when RNG = high, the range is between twice the applied reference voltage and GND.

Table 1. Serial Input Decode

A2	A1	A0	DAC UPDATED	
0	0	(O	DACA	$C_{O_{M_T}}$
0	0	1	DACB	CON
0	1/1	0	DACC	c01
0	1	1	DACD	N.C.
1	Co	0	DACE	N.C
1	0	1	DACF	~ (
11,0	1	0	DACG	Mar.
1 40	1	. 11	DACH	100%

Table 2. Ideal Output Transfer

D7	D6	D5	D4	D3	D2	D1	D0	OUTPUT VOLTAGE
0	0	0	0	0	0	0	0	GND
0	0	0	0	0	0	0	1	(1/256) × REF (1+RNG)
•1	•	• ,	NIN	11.	00-X	CA	. •	N. M. M.
	•	•	•		00	7 (0	M:	W AWW.L
0	1	1	1	1	101	1	1	(127/256) × REF (1+RNG
1	0	0	0	0	0	0	0	(128/256) × REF (1+RNC
Àr.	- N	•	• <		1.5	. · ·	Oh	TW . WWW
• 1	•	•	•	***	M•77	• 1	COD	· WW
1	1	1	1	1	1	01	1	(255/256) × REF (1+RNC

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM

linearity, offset, and gain error using single end supplies

When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With a positive offset, the output voltage changes on the first code change. With a negative offset the output voltage may not change with the first code depending on the magnitude of the offset voltage.

The output amplifier, with a negative voltage offset, attempts to drive the output to a negative voltage. However, because the most negative supply rail is ground, the output cannot drive to a negative voltage.

So when the output offset voltage is negative, the output voltage remains at 0 V until the input code value produces a sufficient output voltage to overcome the inherent negative offset voltage, resulting in the transfer function shown in Figure 5.

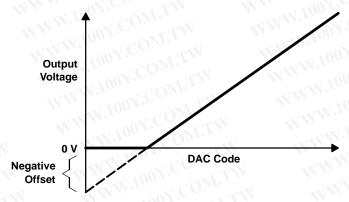
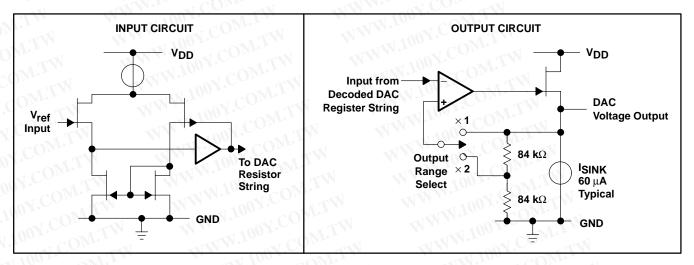


Figure 5. Effect of Negative Offset (Single Supply)

This negative offset error, not the linearity error, produces the breakpoint. The transfer function would have followed the dotted line if the output buffer could drive to a negative voltage.

For a DAC, linearity is measured between the zero-input code (all inputs are 0) and the full-scale code (all inputs are 1) after offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity in the unipolar mode is measured between full-scale code and the lowest code which produces a positive output voltage.


The code is calculated from the maximum specification for the negative offset.

TLC5628C, TLC5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS

SLAS089D - NOVEMBER 1994 - REVISED SEPTEMBER 1996

equivalent of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage (V _{DD} – GND)	
Digital input voltage range, V _{ID}	
Reference input voltage range	
Operating free-air temperature range, T _A : TLC5628C	
TLC5628I	–40°C to 85°C
Storage temperature range, T _{stg}	–50°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	230°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

INW.Ing COM.	N COMP.	MIN NO	M MAX	UNIT
Supply voltage, V _{DD}	W. Jun COM.	4.75	5.25) V
High-level digital input voltage, VIH	TW TOOK ON	0.8 V _{DD}	VI 100 1	V
Low-level digital input voltage, V _{IL}	TW WWW.	TW	0.8	V
Reference voltage, V _{ref} [A B C D E F G H	WWW.ICON	W W	V _{DD} −1.5	V
Analog full-scale output voltage, $R_L = 10 \text{ k}$	Ω	3.	5	
Load resistance, RL	M.TW WILLIAM	10	100 L	kΩ
Setup time, data input, t _{SU(DATA-CLK)} (se	ee Figures 1 and 2)	50	N VV	ns
Valid time, data input valid after CLK \downarrow , $t_{V(I)}$	DATA-CLK) (see Figures 1 and 2)	50	WWW	ns
Setup time, CLK eleventh falling edge to L	OAD, t _{Su(CLK-LOAD)} (see Figure 1)	50	MMIN	ns
Setup time, LOAD↑ to CLK↓, t _{SU(LOAD-C}	LK) (see Figure 1)	50	WW.	ns
Pulse duration, LOAD, tw(LOAD) (see Fig	ure 1)	250	TAIN!	ns
Pulse duration, LDAC, tw(LDAC) (see Fig	ure 2)	250	MA	ns
Setup time, LOAD↑ to LDAC↓, t _{Su(LOAD} -	LDAC) (see Figure 2)	0.11	MM	ns
CLK frequency	COM.	ON COM	1	MHz
On another transmission of the second section of the section of the second section of the section of the second section of the section	TLC5628C	CO0	70	°C
Operating free-air temperature, TA	TLC5628I	-40	85	°C

TLC5628C, TLC5628I OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS

SLAS089D - NOVEMBER 1994 - REVISED SEPTEMBER 1996

electrical characteristics over recommended operating free-air temperature range, V_{DD} = 5 V \pm 5%, $V_{ref} = 2 V_1 \times 1$ gain output range (unless otherwise noted)

Ohr	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
hH)	High-level digital input current	$V_I = V_{DD}$	TW		±10	μΑ
IIL OM.	Low-level digital input current	V _I = 0 V	- T.N.		±10	μΑ
IO(sink)	Output sink current	Food DAC quitaut	20			μΑ
IO(source)	Output source current	Each DAC output	2	N		mA
CA CON	Input capacitance	DATE WAYN TO A C	Dr.	15		pF
Ci	Reference input capacitance	COM.	00_{Mr} ,	15		μr
l _{DD}	Supply current	V _{DD} = 5 V	MOD	1.	4	mA
I _{ref}	Reference input current	$V_{DD} = 5 \text{ V}, V_{ref} = 2 \text{ V}$		TW	±10	μΑ
EL	Linearity error (end point corrected)	$V_{ref} = 2 V$, $\times 2 gain (see Note 1)$	T.Co.		±1	LSB
ED	Differential-linearity error	$V_{ref} = 2 V$, $\times 2 gain (see Note 2)$	LU CO	Mi	±0.9	LSB
EZS	Zero-scale error	$V_{ref} = 2 V$, $\times 2 gain (see Note 3)$	0	M_{II}	30	mV
400	Zero-scale-error temperature coefficient	$V_{ref} = 2 V$, $\times 2 gain (see Note 4)$	001.0	10	L.M.	μV/°C
E _{FS}	Full-scale error	$V_{ref} = 2 V$, $\times 2 gain (see Note 5)$	OUX.	, O	±60	mV
-x1VI.10	Full-scale-error temperature coefficient	V _{ref} = 2 V, × 2 gain (see Note 6)		±25	W	μV/°C
PSRR	Power supply rejection ratio	See Notes 7 and 8	100.	0.5	1.	mV/V

1. Integral nonlinearity (INL) is the maximum deviation of the output from the line between zero and full scale (excluding the effects of zero code and full-scale errors).

- 2. Differential nonlinearity (DNL) is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code.
- 3. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.
- 4. Zero-scale-error temperature coefficient is given by: ZSETC = [ZSE(T_{max}) ZSE(T_{min})]/V_{ref} × 10⁶/(T_{max} T_{min}).
- 5. Full-scale error is the deviation from the ideal full-scale output $(V_{fef} 1 LSB)$ with an output load of 10 k Ω .
- 6. Full-scale temperature coefficient is given by: $FSETC = [FSE(T_{max}) FSE(T_{min})]/V_{ref} \times 10^6/(T_{max} T_{min})$.
- 7. Zero-scale-error rejection ratio (ZSE RR) is measured by varying the V_{DD} from 4.5 V to 5.5 V dc and measuring the proportion of this signal imposed on the zero-code output voltage.
- 8. Full-scale-error rejection ratio (FSE RR) is measured by varying the VDD from 4.5 V to 5.5 V dc and measuring the proportion of this signal imposed on the full-scale output voltage.

operating characteristics over recommended operating free-air temperature range, $V_{DD} = 5 \text{ V} \pm 5\%$ $V_{ref} = 2 V_{ref} \times 1$ gain output range (unless otherwise noted)

W. 100	TEST CONDITIONS	MIN TYP MAX	UNIT
Output slew rate	$C_L = 100 \text{ pF}, R_L = 10 \text{ k}\Omega$	1	V/μs
Output settling time	To 0.5 LSB, $C_L = 100 \text{ pF}$, $R_L = 10 \text{ k}\Omega$, See Note 9	10	μs
Large signal bandwidth	Measured at −3 dB point	100	kHz
Digital crosstalk	CLK = 1-MHz square wave measured at DACA-DACD	-50	dB
Reference feedthrough	See Note 10	-60	dB
Channel-to-channel isolation	See Note 11	-60	dB
Reference input bandwidth	See Note 12	100	kHz

NOTES: 9. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of 00 hex to FF hex or FF hex to 00 hex. For TLC5628C: $V_{DD} = 5 \text{ V}$, $V_{ref} = 2 \text{ V}$ and range = $\times 2$. For TLC5628I: $V_{DD} = 3 \text{ V}$, $V_{ref} = 1.25 V and range \times 2.$

- 10. Reference feedthrough is measured at any DAC output with an input code = 00 hex with a V_{ref} input = 1 V dc + 1 V_{pp} at 10 kHz.
- 11. Channel-to-channel isolation is measured by setting the input code of one DAC to FF hex and the code of all other DACs to 00 hex with V_{ref} input = 1 V dc + 1 V_{pp} at 10 kHz.
- 12. Reference bandwidth is the -3 dB bandwidth with an input at V_{ref} = 1.25 V dc + 2 V_{pp}, with a full-scale digital input code.

PARAMETER MEASUREMENT INFORMATION

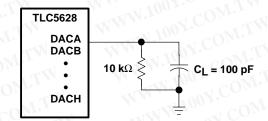


Figure 6. Slewing Settling Time and Linearity Measurements

TYPICAL CHARACTERISTICS

POSITIVE RISE AND SETTLING TIME

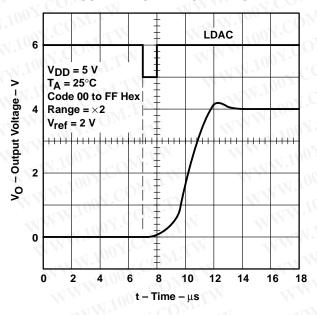


Figure 7

WWW.100Y.COM.TW

NEGATIVE FALL AND SETTLING TIME

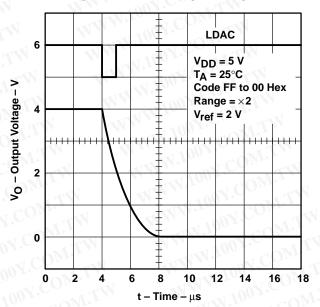
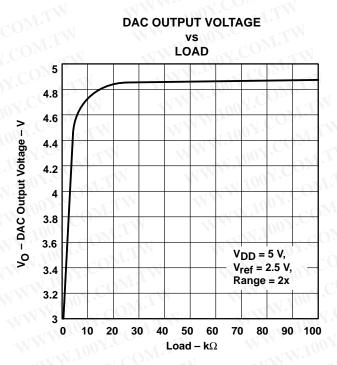
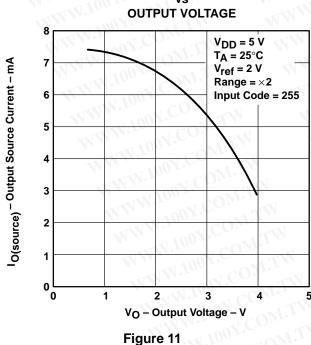



Figure 8

WWW.100Y.COM. 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


TYPICAL CHARACTERISTICS

DAC OUTPUT VOLTAGE vs LOAD 3.5 Vo - DAC Output Voltage - V 3 2.5 2 1.5 1 $V_{DD} = 5 V$ $V_{ref} = 3.5 V$ 0.5 Range = 1x30 50 60 0 20 Load – $k\Omega$

Figure 9

OUTPUT SOURCE CURRENT VS **OUTPUT VOLTAGE**

vs **TEMPERATURE** 1.2 1.15 IDD - Supply Current - mA 1.1 $V_{DD} = 5 V$ V_{ref} 2 V Range = $\times 2$ 1.05 Input Code = 255 0.95 0.9 0.85

Figure 10

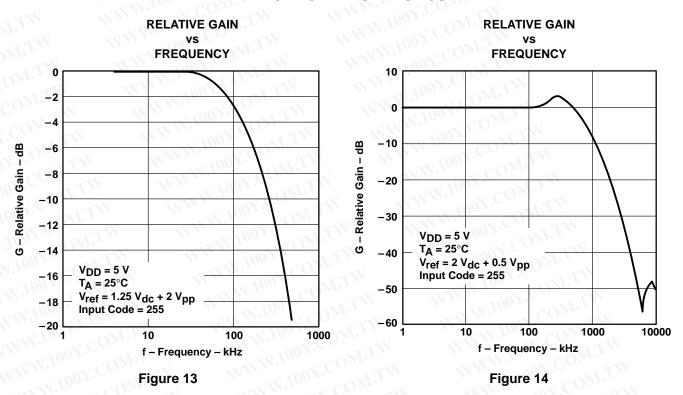
SUPPLY CURRENT

Figure 12

t - Temperature - °C

0

0.8


-50

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

50

100

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

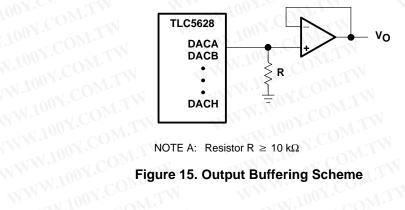
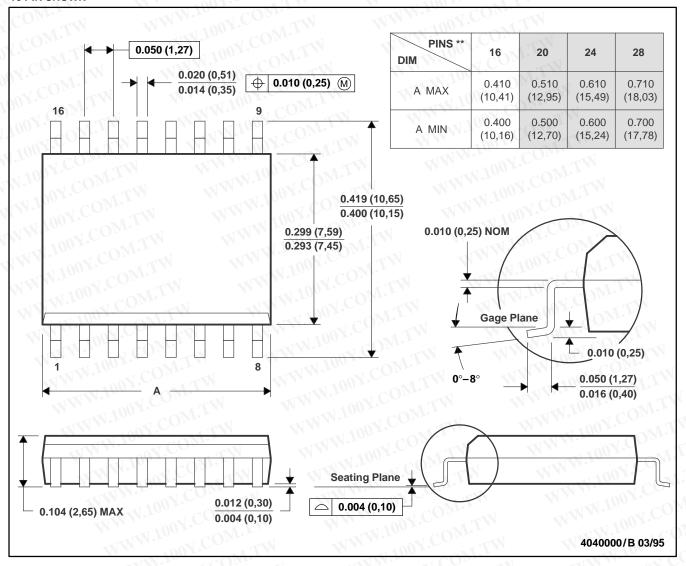


Figure 15. Output Buffering Scheme



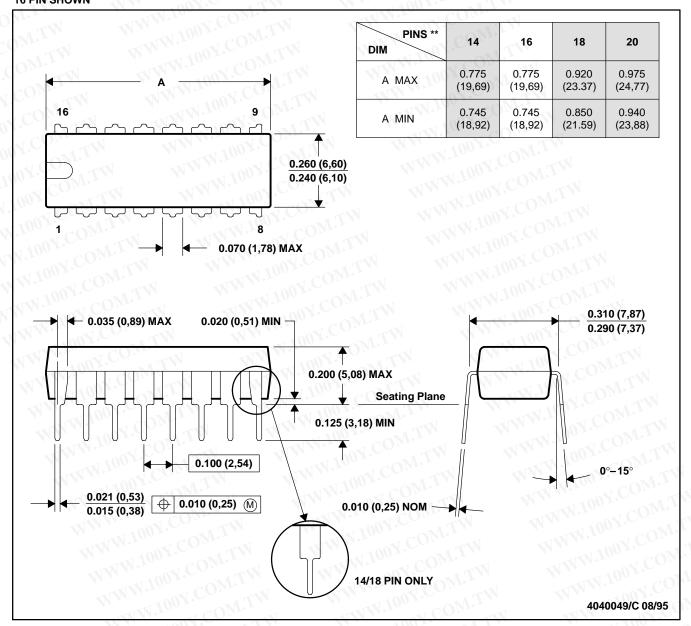
MECHANICAL DATA

DW (R-PDSO-G**)

16 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
 - D. Falls within JEDEC MS-013



MECHANICAL DATA

N (R-PDIP-T**)

16 PIN SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001)

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated