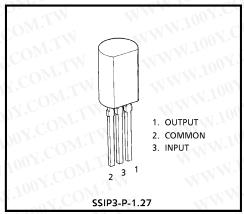
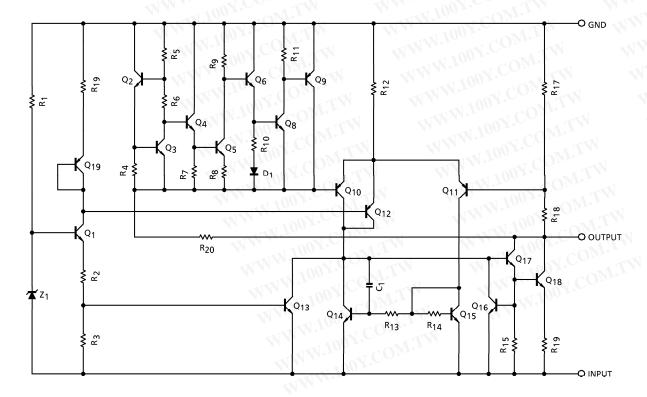
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


TA79L005P, TA79L006P, TA79L008P, TA79L009P, TA79L010P TA79L012P, TA79L015P, TA79L018P, TA79L020P, TA79L024P

-5V, -6V, -8V, -9V, -10V, -12V, -15V, -18V, -20V, -24V 3-TERMINAL NEGATIVE VOLTAGE REGULATORS

FEATURES


- Best suited to a power supply for TTL and C²MOS
- Built-in overcurrent protective circuit
- Built-in thermal protective circuit
- Max. output current 150mA (T_i = 25°C)
- Packaged in TO-92MOD

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Weight: 0.36g (Typ.)

EQUIVALENT CIRCUIT

961001EBA2

[●] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

WWW.100Y.COM.TW **MAXIMUM RATINGS** (Ta = 25°C)

CHARACTE	RISTIC	SYMBOL	RATING	UNIT
WWW	TA79L005P	N V	WW. 100X	.Cu
	TA79L006P	W.		COM
	TA79L008P	_ <1		CON
	TA79L009P	IN	– 35	
nput Voltage	TA79L010P	. TV		
TA79L012P		VIN		, V.C
	TA79L015P	M		100
	M T ANT ANT ANT ANT ANT ANT ANT ANT ANT A	W.TW		100 7.
	TA79L020P	WILL	- 40	11007
	TA79L024P	OM		11.
Power Dissipation	(Ta = 25°C)	PD	800	mW
Operating Tempera	ature	Topr	- 30~75	°C
Storage Temperatu	re	T _{stg}	- 55∼150	°C
Operating Junction	Temperature	V.C	√ – 30~150	°C
hermal Resistance	TANN TO	R _{th} (j-a)	156	°C/W

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

TA79L005P

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} = -10V, I_{OUT} = 40mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_{j} \leq 125°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MMA	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _i = 25°C	W. COM TW	- 5.2	- 5.0	- 4.8	V
Line Description W.100	ann.	sia.	T 25°C	$-20V \le V_{ N} \le -7.0V$	_	55	150	ov.CC
Line Regulation	Reg. Line	N 1	$T_j = 25^{\circ}C$	$-20V \le V_{1N} \le -8.0V$	_	45	100	mV
Local Demulation	Open Level		T 25°C	1.0mA ≦ I _{OUT} ≦ 100mA	Y _	11	60	003.
Load Regulation	Reg. Load	1	$T_j = 25^{\circ}C$	1.0mA≦I _{OUT} ≦40mA	W—	5.0	30	mV
Output Voltage	Vout	17	T _i = 25°C	$T_j = 25^{\circ}C$		_	- 4.75	V.100Y
MM,	1007.00	Ti	W	1.0mA≦I _{OUT} ≦70mA	- 5.25	_	- 4.75	XX 100
0	M. CC	4 - 1	T _i = 25°C	MAN W. TOON CO.	- 	3.1	6.0	(01
Quiescent Current	IB	OM.	T _j = 125°C		_	<u> </u>	5.5	mA
Quiescent Current	⊿ I _{BI}	11	$-20V \le V_{ N} \le -8.0V$		$O_{\overline{M}^{*}}$	_	1.5	ν _α Δ
Change	⊿ I _{BO}	1	1.0mA ≤ I _{OUT} ≤ 40mA		OM.	_	0.1	mA
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz≤f≤100kHz		COM	40	_	μ V $_{rms}$
Long Term Stability	⊿ ∨ _{OUT} / ⊿ t	01.C	$O_{M,1}$	A - MMM 100	(.CO)	12	_	mV / 1.0kh
Ripple Rejection Ratio	R.R.	3		/ _{IN} ≦ −8.0V f=120Hz	41	49	N _	dB
Dropout Voltage	VIN-VOUT	100	$T_j = 25^{\circ}C$	I.W.I	00 =	1.7	<u> </u>	V
Average Temperature Coefficient of Output Voltage	TCVO	N.10	I _{OUT} = 5r	mA W WWW	100 X	0.6	1.1 .1 /	mV/°C

TA79L006P

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{IN} = -11V$, $I_{OUT} = 40$ mA, $C_{IN} = 0.33 \mu$ F, $C_{OUT} = 0.1 \mu$ F, 0° C $\leq T_{i} \leq 125^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MMA	EST CONDITION	MIN.	TYP.	MAX.	UNIT	
Output Voltage	Vout	1	T _j = 25°C		- 6.24	-6.0	- 5.76	V	
Line Description W. 100	" COMP.	-S14	$ -21V \le V_{ N} \le -8.1V$		1 —	50	150	ov.CC	
Line Regulation	Reg. Line	N 1	$T_j = 25^{\circ}C$ $21V \le V_{IN} \le -9.0V$		_	45	110	mV	
Land Danielation	OD and and		T 25°C	1.0mA≦I _{OUT} ≦ 100mA	<u> </u>	12	70	1007	
Load Regulation	Reg. Load	1	$1j = 25 \text{ C}$ $1.0\text{mA} \le I_{OUT} \le 40\text{mA}$		W-	5.5	35	mV	
Output Voltage	Vout	17	T _i = 25°C	$T_j = 25^{\circ}C$ $\begin{vmatrix} -21V \le V_{IN} \le -8.1V \\ 1.0mA \le I_{OUT} \le 40mA \end{vmatrix}$		_	- 5.7	1.100	
MM.	1007.00	TI	N.	1.0mA≦I _{OUT} ≦70mA	- 6.3	1	- 5.7	W.100	
Outcome Comment	M. Co	-10	T _j = 25°C	MAM. TOUX CO.	1 1 1	3.1	6.0	101	
Quiescent Current	IB	O_{MT} .	T _j = 125°C		Mr.	_	5.5	mA	
Quiescent Current	⊿I _{BI}	-dM	$-21V \le V_{ N} \le -9.0V$		$OJ_{\overline{A^*}_F}$		1.5	Van A	
Change	⊿I _{BO}	1	1.0mA ≦ I _{OUT} ≦ 40mA			_	0.1	mA	
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz≤f≤ 100kHz		COM	40	_	μ V $_{rms}$	
Long Term Stability	⊿ V _{OUT} / ⊿ t	01.C	$O_{M,T}^{M,1}$	M MMM.100	(. <u>CO</u>)	14	_	mV / 1.0kh	
Ripple Rejection Ratio	R.R.	03		/ _{IN} ≦ −9.0V f=120Hz	39	47	N_	dB	
Dropout Voltage	VIN-VOUT	700	$T_j = 25^{\circ}C$	III. WINI	00 =	1.7	- - -	V	
Average Temperature Coefficient of Output Voltage	Tcvo	N.100	I _{OUT} = 5r	mA W WWW	100 X	0.7	T.LAN	mV / °C	

TA79L008P

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{IN} = -14V$, $I_{OUT} = 40$ mA, $C_{IN} = 0.33 \mu$ F, $C_{OUT} = 0.1 \mu$ F, 0° C $\leq T_i \leq 125^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MM	EST CONDITION	MIN.	TYP.	MAX.	UNIT	
Output Voltage	Vout	1	T _j = 25°C		- 8.3	-8.0	- 7.7	V	
Line Devolution W. 100	COMP	-S14	$ -23V \le V_{ N} \le -10.5V$		<u> </u>	20	175	ov.CC	
Line Regulation	Reg. Line	N 1	$T_j = 25^{\circ}C$ $23V \le V_{IN} \le -11V$		_	12	125	mV	
Lood Dogulation	Don Look		T. 25°C	1.0mA ≦ I _{OUT} ≦ 100mA	Y _	15	80	1007.	
Load Regulation	Reg. Load	1	$T_j = 25^{\circ}C$ $1.0mA \le I_{OUT} \le 40mA$		W-	7.0	40	mV	
Output Voltage	Vout	LTV	T _i = 25°C	$T_j = 25^{\circ}C$ $\begin{vmatrix} -23V \le V_{IN} \le -10.5V \\ 1.0mA \le I_{OUT} \le 40mA \end{vmatrix}$		_	- 7.6	1.100	
	100 X.CO	TI	N	1.0mA≦I _{OUT} ≦70mA	-8.4	_	- 7.6	N.100	
Outocont Current	I-OUT CO	-10	$T_j = 25^{\circ}C$	MM 100 X.Co.	TV T	3.1	6.5	A	
Quiescent Current	IB	OM.	T _j = 125°C			N —	6.0	mA	
Quiescent Current	⊿I _{BI}	-dM	- 23V≦ V _{IN} ≦ - 11V		$O_{\overline{M^*}_T}$	_	1.5	mA	
Change	⊿I _{BO}	1	1.0mA ≦ I _{OUT} ≦ 40mA		Q41.	_	0.1	IIIA	
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz≤f≤ 100kHz		C O. M	60	_	μ V $_{rms}$	
Long Term Stability	⊿ V _{OUT} / ⊿ t	01.C	$O_{M,1}$	M - MMM 100	r.col	20	_	mV / 1.0kh	
Ripple Rejection Ratio	R.R.	03		/ _{IN} ≦ – 12V f = 120Hz	37	45	N_	dB	
Dropout Voltage	VIN-VOUT	700	$T_j = 25^{\circ}C$	In MIN'I	00=	1.7	- 	V	
Average Temperature Coefficient of Output Voltage	Tcvo	N.100 W.10	I _{OUT} = 51	mA W WWW	100 x	0.8	1.1 .11	mV / °C	

TA79L009P ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{IN} = -15V$, $I_{OUT} = 40$ mA, $C_{IN} = 0.33 \mu$ F, $C_{OUT} = 0.1 \mu$ F, 0° C $\leq T_i \leq 125^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MMA	EST CONDITION	MIN.	TYP.	MAX.	UNIT	
Output Voltage	Vout	1	T _j = 25°C		- 9.36	- 9.0	- 8.64	V	
Line Devolution W. 100	COMP	-S14	T. 25°C -24V≦V _{IN} ≦ -11.4V		1 —	80	200	ov.CC	
Line Regulation	Reg. Line	N 1	$T_j = 25^{\circ}C$	- 24V≦V _{IN} ≦ - 12V	_	20	160	mV	
Lood Dogulation	Don Look		T _j = 25°C	1.0mA≦ I _{OUT} ≦ 100mA	_	17	90	007	
Load Regulation	Reg. Load	1	7 1.0mA ≥ 10UT ≥ 40mA		W-	8.0	45	mV	
Output Voltage	Vout	LTV	T _i = 25°C	$T_j = 25^{\circ}C$		_	- 8.55	1.100	
	100 X.CO	TI	N.	1.0mA≦I _{OUT} ≦70mA	- 9.45	-	- 8.55	W.100	
Outocont Current	I-OUT CO	-10	T _j = 25°C	MANATOR	W _T	3.2	6.5	(A)	
Quiescent Current	IB	OM.	T _j = 125°C			1 —	6.0	mA	
Quiescent Current	⊿I _{BI}	-dM	- 24V≦ V _{IN} ≦ - 12V		$O_{\overline{M^*}_T}$	_	1.5	mA	
Change	⊿I _{BO}	1	1.0mA ≦ I _{OUT} ≦ 40mA		10 1 17	<u> </u>	0.1	IIIA	
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz≤f≤ 100kHz		CQN	65	_	μ V $_{rms}$	
Long Term Stability	⊿ V _{OUT} / ⊿ t	01.C	$O_{M,T}^{M,1}$	M MMM.100	I.CON	21	_	mV / 1.0kh	
Ripple Rejection Ratio	R.R.	03		/ _{IN} ≦ – 12V f = 120Hz	36	44	N _	dB	
Dropout Voltage	VIN-VOUT	700	$T_j = 25^{\circ}C$	In MANA	00 =	1.7	- T	V	
Average Temperature Coefficient of Output Voltage	Tcvo	N.100	I _{OUT} = 5r	mA W WWW	100 X	0.85	1.1 .1 /	mV / °C	

TA79L010P ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{IN} = -16V$, $I_{OUT} = 40$ mA, $C_{IN} = 0.33 \mu$ F, $C_{OUT} = 0.1 \mu$ F, 0° C $\leq T_i \leq 125^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	V	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	1	T _j = 25°C	W. COST. TW	- 10.4	- 10.0	- 9.6	V
Line Demulation	COMP	1	T. 25°C	$-25V \le V_{1N} \le -12.5V$	<u> </u>	80	230	Vac.V
Line Regulation	Reg. Line	1	$T_j = 25^{\circ}C$	- 25V≦ V _{IN} ≦ - 13V	<u> </u>	30	170	mV
Load Regulation	Reg. Load	1	T _i = 25°C	1.0 mA $\leq I_{OUT}\leq 100$ mA		18	-100	mV
Load Regulation	Reg. Load	TW	1 ₁ = 23 C	1.0 mA \leq I $_{OUT}\leq$ 40mA		8.5	45	1007
Output Voltage	Vout	1.1	T _i = 25°C	$-25V \le V_{ N} \le -12.5V$ 1.0mA \le I _{OUT} \le 40mA	- 10.5	_	- 9.5	V.1005
	1100X.CO	TI	N	1.0mA≦I _{OUT} ≦70mA	- 10.5	_	- 9.5	W.100
Quiescent Current	N. CC	-1/	$T_j = 25^{\circ}C$	MANATION	WTN	3.2	6.5	mA
Quiescent Current	IB	O_{MT} .	$T_j = 125^{\circ}C$			<u> </u>	6.0	MA
Quiescent Current	⊿I _{BI}	11	- 25V≦ V _{IN} ≦ - 13V		$0\sqrt{T}$,	_	1.5	mA
Change	⊿I _{BO}	1	1.0mA≦I _{OUT} ≦40mA		-0 M $_{\rm J}$		0.1	IIIA
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz≤f≤		COM	70	_	μ V $_{rms}$
Long Term Stability	∆V _{OUT} / ∆t	01.C	$O_{M,1}$	A - MMM 100	(CON	22	_	mV / 1.0kh
Ripple Rejection Ratio	R.R.	3	/\ \	/ _{IN} ≦ – 13V f = 120Hz	36	43		dB
Dropout Voltage	VIN-VOUT	100	$T_j = 25^{\circ}C$	I.W.I	00 =	1.7	- T	V
Average Temperature Coefficient of Output Voltage	Tcvo	N.10	I _{OUT} = 5r	mA W WWW	100 X	0.9	T.L.A.	mV/°C

TA79L012P ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{IN} = -19V$, $I_{OUT} = 40$ mA, $C_{IN} = 0.33 \mu$ F, $C_{OUT} = 0.1 \mu$ F, 0° C $\leq T_{i} \leq 125^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	T. T.	EST CONDITION	MIN.	TYP.	MAX.	UNIT	
Output Voltage	Vout	1	T _i = 25°C	W. COST. TW	- 12.5	- 12.0	- 11.5	V	
Line Description W.100	COMP	- 1 a	T 25°C	$-27V \le V_{1N} \le -14.5V$	-	120	250	ov.C	
Line Regulation	Reg. Line	N 1	$T_j = 25^{\circ}C$	- 27V≦ V _{IN} ≦ - 16V		100	200	mV	
Load Bogulation	Pog. Load	1	T _i = 25°C	1.0 mA $\leq I_{OUT}\leq 100$ mA	_	20	100	1003.	
Load Regulation	Reg. Load	TW	. 1.0MA ≥ 100L ≥ 40MA		W-	10	50	mV	
Output Voltage	Vout	11	T _i = 25°C	$T_j = 25^{\circ}C$		_ <	- 11.4	1.100	
	1100 Y.CO	TI	N	1.0mA≦I _{OUT} ≦70mA	- 12.6	_	- 11.4	W.100	
Outocont Current	I-OUT CO	4	$T_j = 25^{\circ}C$	MMM. TOUX'CO.	WTI	3.2	6.5	(A)	
Quiescent Current	IB	OM.	T _j = 125°C			v —	6.0	mA	
Quiescent Current	⊿I _{BI}	1	- 27V≦V _{IN} ≦ - 16V		$0 j_{\overline{T}}$,		1.5	mA	
Change	⊿I _{BO}	1	1.0mA≦I _{OUT} ≦40mA		OM.)	<u> </u>	0.1	IIIA	
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz ≤ f≤ 100kHz		COM	80	-	μ V $_{rms}$	
Long Term Stability	⊿ V _{OUT} / ⊿ t	01.C	$O_{M,1}$	A - MMM 100	(.CO)	24	_	mV / 1.0kh	
Ripple Rejection Ratio	R.R.	3		/ _{IN} ≦ – 15V f = 120Hz	37	42		dB	
Dropout Voltage	VIN-VOUT	7040	$T_j = 25^{\circ}C$	In MINI	00 =	1.7		V	
Average Temperature Coefficient of Output Voltage	Tcvo	1.100 1 (V.10	I _{OUT} = 5r	mA W WWW	100 x	1.0	LI IV	mV/°C	

TA79L015P ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{IN} = -23V$, $I_{OUT} = 40$ mA, $C_{IN} = 0.33 \mu$ F, $C_{OUT} = 0.1 \mu$ F, 0° C $\leq T_{i} \leq 125^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	T	EST CONDITION	MIN.	TYP.	MAX.	UNIT	
Output Voltage	Vout	1	$T_j = 25$ °C		- 15.6	- 15.0	- 14.4	V	
Line Demilar W.10	COM.	- Sia	T 2506	$-30V \le V_{ N} \le -17.5V$	v —	130	300	ov.CC	
Line Regulation	Reg. Line	1	$T_j = 25^{\circ}C$	-30V≦V _{IN} ≦ -20V	_	110	250	mV	
Load Population	Pog. Load		T _i = 25°C	1.0mA≦I _{OUT} ≦ 100mA	N_	25	150	003	
Load Regulation	Reg. Load	1	, 1.0mA ≥ 10UT ≥ 40mA			12	75	mV	
Output Voltage	Vout	11	T _i = 25°C	$T_j = 25^{\circ}C$ $\begin{vmatrix} -30V \le V_{IN} \le -17.5V \\ 1.0mA \le I_{OUT} \le 40mA \end{vmatrix}$		_	- 14.25	1.1007	
	1100X.CO	117	11	1.0mA≦I _{OUT} ≦70mA	- 15.75	_	- 14.25	W.100	
Outoccont Current	IN. LOOV.CI	-11	$T_j = 25^{\circ}C$			3.3	6.5	ma (A) (
Quiescent Current	IB	OW	$T_j = 125$ °C			N-	6.0	mA	
Quiescent Current	⊿I _{BI}	1	-30V≦V _{IN} ≦ -20V		OM.	_	1.5	mA	
Change	⊿ I _{BO}	1	$1.0\text{mA} \le I_{OUT} \le 40\text{mA}$		- TV		0.1	IIIA	
Output Noise Voltage	V _{NO}	2	- 1	Ta = 25°C 10Hz≤f≤100kHz		90	-	μ V $_{rms}$	
Long Term Stability	⊿V _{OUT} / ⊿t	1.0	OM.I.	M - MMM.100	N.CO	30	-	mV / 1.0kh	
Ripple Rejection Ratio	R.R.	3		≦ V _{IN} ≦ – 18.5V f = 120Hz	34	39		dB	
Dropout Voltage	VIN-VOUT	110	$T_j = 25^{\circ}C$	TW.	100.	1.7	- X	V	
Average Temperature Coefficient of Output Voltage	Tcvo	N 10'	I _{OUT} = 5r	mA W	N:1 <u>0</u> 02	1.3	1. 1. N	mV / °C	

TA79L018P ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{IN} = -27V$, $I_{OUT} = 40$ mA, $C_{IN} = 0.33 \mu$ F, $C_{OUT} = 0.1 \mu$ F, 0° C $\leq T_i \leq 125^{\circ}$ C)

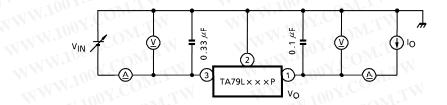
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	T. T.	EST CONDITION	MIN.	TYP.	МАХ.	UNIT
Output Voltage	Vout	1	T _j = 25°C		- 18.7	- 18.0	- 17.3	V
Line Demokratical W. 100	ZOM.	-s1a	T 25°C	$-33V \le V_{1N} \le 20.7V$	_	32	325	ov.CC
Line Regulation	Reg. Line	N 1	$T_j = 25^{\circ}C$	-33V≦V _{IN} ≦ -21V	_	27	275	mV
Local Deculation	Open Lead	CAN	T 25°C	1.0mA≦ I _{OUT} ≦ 100mA	_	30	170	007.
Load Regulation	Reg. Load	1	$T_j = 25^{\circ}C$	1.0mA≦I _{OUT} ≦40mA	N -	15	75	mV
Output Voltage	Vout	1.1 V	T _i = 25°C	$-33V \le V_{ N} \le -20.9V$	- 18.9		- 17.1	1.1005
	1007.00	TI	N	1.0mA≦I _{OUT} ≦70mA	- 18.9	_	- 17.1	-x 100
Www.a.	M. C.C.	N. P.	T _j = 25°C		-	3.3	6.5	10
Quiescent Current	IB	OM.	T _j = 125°C			v —	6.0	mA
Quiescent Current	⊿I _{BI}	1	-33V≦V _{IN} ≦ -21V		$D_{\overline{A}\overline{A}}$	_	1.5	WW.
Change	⊿I _{BO}	1	1.0mA≦ I _{OUT} ≦ 40mA		-4 .7	<u> </u>	0.1	mA
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz ≤ f	≤ 100kHz	COM	150	_	μ V $_{rms}$
Long Term Stability	⊿ ∨ _{OUT} / ⊿ t	01.C	OM.I	M MMM.100	(CO)	45	_	mV / 1.0kh
Ripple Rejection Ratio	R.R.	3		/ _{IN} ≦ – 23V f = 120Hz	33	48	N	dB
Dropout Voltage	VIN-VOUT	1(10)	T _i = 25°C	III WALL	00=	1.7		V
Average Temperature Coefficient of Output Voltage	Tcvo	V-100 VV-10	I _{OUT} = 5r	mA W WW	100 X	1.5	l'I A A	mV / °C

TA79L020P ELECTRICAL CHARACTERISTICS

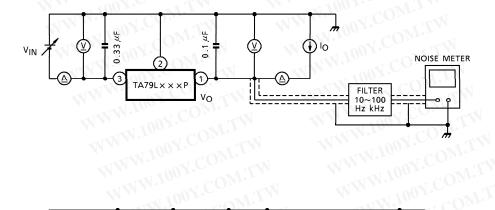
(Unless otherwise specified, $V_{IN} = -29V$, $I_{OUT} = 40 \text{mA}$, $C_{IN} = 0.33 \mu\text{F}$, $C_{OUT} = 0.1 \mu\text{F}$, $0^{\circ}\text{C} \le T_{j} \le 125^{\circ}\text{C}$)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MMI	EST CONDITION	MIN.	TYP.	MAX.	UNIT	
Output Voltage	Vout	1	T _j = 25°C		- 20.8	- 20.0	- 19.2	V	
Line Devolution W. 100	COMP	-S14	$-35V \le V_{ N } \le -23.5V$		1 —	33	330	ov.C	
Line Regulation	Reg. Line	N 1	$T_j = 25^{\circ}C$	-35V≦V _{IN} ≦ -24V	_	28	285	mV	
Lood Dogulation	Don Look		T _i = 25°C	1.0mA≦ I _{OUT} ≦ 100mA	_	33	180	1007.	
Load Regulation	Reg. Load	1	. 1.0mA ≥ 1001 ≥ 40mA		W-	17	90	mV	
Output Voltage	Vout	1.1	T _i = 25°C	$T_j = 25^{\circ}C$ $\begin{vmatrix} -35V \le V_{IN} \le -23.5V \\ 1.0mA \le I_{OUT} \le 40mA \end{vmatrix}$		_	- 19.0	1.00	
	100 X.CO	TI	N	1.0mA≦I _{OUT} ≦70mA	- 21.0	_	- 19.0	W.100	
Outocont Current	I-OUT CO	-10	$T_j = 25^{\circ}C$	MANATOR	WTI	3.3	6.5	A \	
Quiescent Current	IB	O_{MT} .	T _j = 125°C		Mr.	v —	6.0	mA	
Quiescent Current	⊿I _{BI}	-dM	-35V≦V _{IN} ≦ -24V		$OJ_{\overline{A^*}_F}$	<u> </u>	1.5	mA	
Change	⊿I _{BO}	1	$10\text{mA} \le I_{OUT} \le 40\text{mA}$		0 4 .7	<u> </u>	0.1	IIIA	
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz ≤ f≤ 100kHz		COM	170	_	μ V $_{rms}$	
Long Term Stability	⊿ V _{OUT} / ⊿ t	01.C	$O_{M,1}$	M MMM.100	(. <u>CO</u>)	49	_	mV / 1.0kh	
Ripple Rejection Ratio	R.R.	03		/ _{IN} ≦ − 27V f = 120Hz	31	37	N	dB	
Dropout Voltage	VIN-VOUT	700	$T_j = 25^{\circ}C$	III. WINI	00 =	1.7	<u>- 1</u>	V	
Average Temperature Coefficient of Output Voltage	Tcvo	N.100 W.10	I _{OUT} = 5r	mA W WWW	1001	1.7	[] [A]	mV / °C	

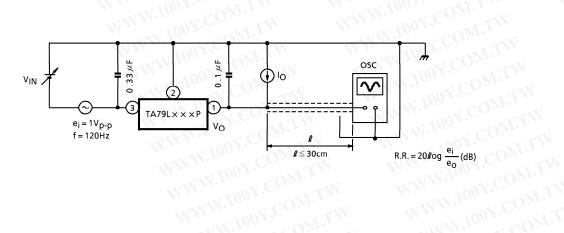
TA79L024P ELECTRICAL CHARACTERISTICS

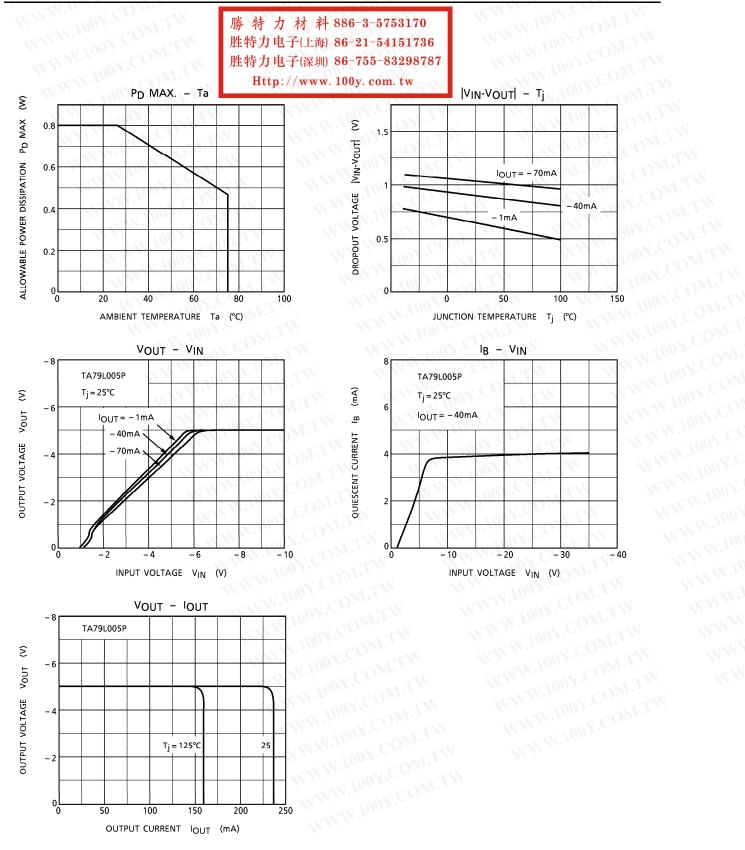

(Unless otherwise specified, $V_{IN} = -33V$, $I_{OUT} = 40$ mA, $C_{IN} = 0.33 \mu$ F, $C_{OUT} = 0.1 \mu$ F, 0° C $\leq T_i \leq 125^{\circ}$ C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	V	EST CONDITION	MIN.	TYP.	МАХ.	UNIT
Output Voltage	Vout	1	T _j = 25°C	W. COST. TW	- 25.0	- 24.0	- 23.0	V
Line Demulation	COM	1	T. 25°C	-38V≦V _{IN} ≦ -27V	-	35	350	mV
Line Regulation	Reg. Line	1	$T_j = 25^{\circ}C$	-38V≦V _{IN} ≦ -28V		30	300	o mv
Load Regulation	Reg. Load	1	T _i = 25°C	1.0 mA $\leq I_{OUT}\leq 100$ mA	_	40	200	mV
Load Regulation	Reg. Load	TW	1 ₁ = 23 C	$1.0\text{mA} \le I_{OUT} \le 40\text{mA}$		20	100	1007
Output Voltage	Vout	1.1	T _i = 25°C	$-38V \le V_{\text{IN}} \le -27V$ 1.0mA \le I _{OUT} \le 40mA	- 25.2		- 22.8	1.100
	-1100Y.C	TIM	77	$1.0\text{mA} \le I_{OUT} \le 70\text{mA}$	- 25.2	_	- 22.8	XX.100
Quiescent Current	M. Troux.Cr	-1/	$T_j = 25^{\circ}C$	MANATION	WFI	3.5	6.5	mΑ
Quiescent Current	IB	O_{MT} .	T _j = 125°C			N —	6.0	IIIA
Quiescent Current	⊿ I _{BI}	11	-38V≦V _{IN} ≦ -28V		$0\sqrt{T}$	_	1.5	mA
Change	⊿ I _{BO}	1	1.0mA≦I _{OUT} ≦40mA		OM.		0.1	
Output Noise Voltage	V _{NO}	2	Ta = 25°C 10Hz≤f≤		COM	200	_	μ V $_{rms}$
Long Term Stability	⊿ ∨ _{OUT} / ⊿ t	01.C	$O_{M,T,N}^{M,T,N}$	A - MMM'100	(. <u>CO</u> N	56	_	mV / 1.0kh
Ripple Rejection Ratio	R.R.	3	/\ \	/ _{IN} ≦ – 29V f = 120Hz	31	47		dB
Dropout Voltage	VIN-VOUT	100	$T_j = 25^{\circ}C$	I.W.I	00 =	1.7	<u>- 1</u>	V
Average Temperature Coefficient of Output Voltage	Tcvo	N.10	I _{OUT} = 5r	mA W WWW	100 X	2.0	T.I.A.	mV/°C

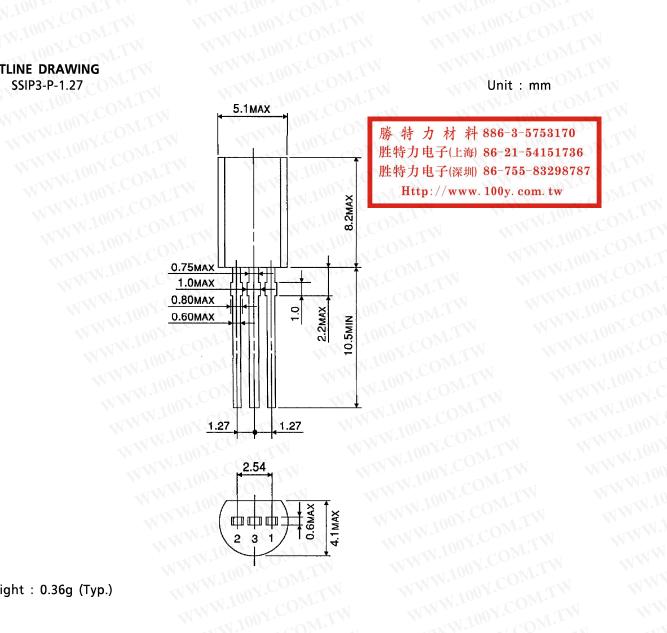

WWW.100Y.CON

WWW.100Y.COM.TW **TEST CIRCUIT**


1. VOUT, Reg.line, Reg.load, IB, \(\Delta \text{IB}, \(\Delta \text{VOUT} / \(\Delta \text{t}, \text{|VIN-VOUT|}, \text{TCVO} \)



2. V_{NO}


3. R.R.

WWW.100Y.COM.TW 100Y.COM.TW **OUTLINE DRAWING** SSIP3-P-1.27

MMM.700

Weight: 0.36g (Typ.)