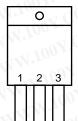


BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC2933A, 2905A

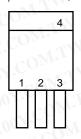
THREE-TERMINAL LOW DROPOUT VOLTAGE REGULATOR

DESCRIPTION

The μ PC2933A, 2905A of low dropout voltage three terminal positive regulators is constructed with PNP output transistor. The μ PC2933A, 2905A feature the ability to source 1 A of output current with a low dropout voltage of typically 0.7 V.


The power dissipation of the μ PC2933A, 2905A can be drastically reduced compared with the conventional three terminal positive voltage regulators that is constructed with NPN output transistor. Also, this series corresponds to the low voltage output (3 V, 3.3 V) which is not in the conventional low dropout regulators (μ PC2400A series).

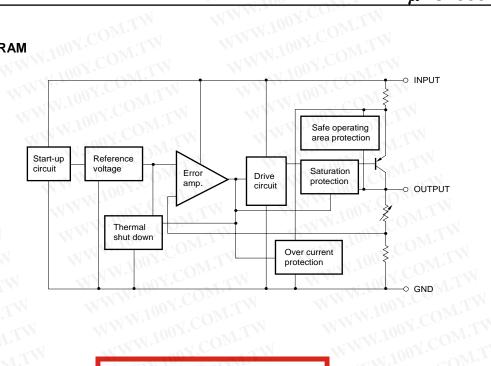
FEATURES


- Output current in excess of 1.0 A
- Low dropout voltage VDIF = 0.7 V TYP. (at Io = 1 A)
- On-chip overcurrent and thermal protection circuit
- On-chip output transistor safe area protection circuit

PIN CONFIGURATION (Marking Side)

 μ PC2933AHF, 2905AHF : MP-45G

1: INPUT 2: GND 3: OUTPUT μ PC2933AHB, 2905AHB : MP-3 μ PC2933AT, 2905AT : MP-3Z



1: INPUT 2: GND 3: OUTPUT 4: GND (Fin)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

BLOCK DIAGRAM

WWW.100Y.C

WWW.100Y.C

00Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM

WWW.I

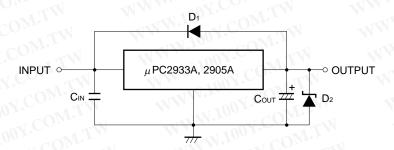
ORDERING INFORMATION

ORDERING INFO	DRMATION			
Part Number	Package	Output Voltage	Marking	Package Type
μPC2933AHF	MP-45G (Isolated TO-220)	3.3 V	2933A	Packed in envelope
μPC2933AHB	MP-3 (SC-64)	3.3 V	2933A	Packed in envelope
μPC2933AT	MP-3Z (SC-63)	3.3 V	2933A	Packed in envelope
μPC2933AT-E1	MP-3Z (SC-63)	CON 3.3 V	2933A	16 mm wide embossed tapingPin 1 on drawout side2000 pcs/reel
μPC2933AT -E2	MP-3Z (SC-63)	3.3 V	2933A	16 mm width embossed tapingPin 1 at takeup side2000 pcs/reel
μPC2933AT -T1	MP-3Z (SC-63)	3.3 V	2933A	32 mm wide adhesive tapingPin 1 at drawout side1500 pcs/reel
μPC2933AT -T2	MP-3Z (SC-63)	3.3 V	2933A	32 mm wide adhesive tapingPin 1 at takeup side1500 pcs/reel
μPC2905AHF	MP-45G (Isolated TO-220)	5.0 V	2905A	Packed in envelope
μPC2905AHB	MP-3 (SC-64)	5.0 V	2905A	Packed in envelope
μPC2905AT	MP-3Z (SC-63)	5.0 V	2905A	Packed in envelope
μPC2905AT-E1	MP-3Z (SC-63)	5.0 V	2905A	16 mm wide embossed tapingPin 1 at drawout side2000 pcs/reel
μPC2905AT-E2	MP-3Z (SC-63)	5.0 V	2905A	16 mm wide embossed tapingPin 1 at takeup side2000 pcs/reel
μPC2905AT-T1	MP-3Z (SC-63)	5.0 V	2905A	32 mm wide adhesive tapingPin 1 at drawout side1500 pcs/reel
μPC2905AT-T2	MP-3Z (SC-63)	5.0 V	2905A	32 mm wide adhesive taping Pin 1 at takeup side 1500 pcs/reel
勝特力材	料 886-3-5753170	OW.TW	WWW	V.100X.COM.TW WWW.1

M.M.M.100X.CC

00Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise specified)

	WTD	Ratin	ng	
Parameter	Symbol	μPC2933AHF, 2905AHF	μPC2933AHB, 2905AHB μPC2933AT, 2905AT	Unit
Input Voltage	Vin	20	I.CUM TW	V
Internal Power Dissipation Note (Tc = 25°C)	Рт	15	10 W	W
Operating Ambient Temperature	TACONY	-30 to	+85	°C
Operating Junction Temperature	Ty.CON	-30 to	+150	°C
Storage Temperature	Tstg	−55 to	+150	°C
Thermal Resistance (junction to case)	Rth(J-C)	7 WW	12.5	°C/W
Thermal Resistance (junction to ambient)	Rth(J-A)	65	125	°C/W

Note Internally limited. When the operating junction temperature rises over 150°C, the internal circuit shuts down the output voltage.

Caution If the absolute maximum rating of any of the above parameters is exceeded even momentarily, the quality of the product may be degraded. In other words, absolute maximum ratings specify the values exceeding which the product may be physically damaged. Be sure to use the product with these ratings never exceeded.

STANDARD CONNECTION

- C_{IN}: $0.1~\mu\text{F}$ or higher. Set this value according to the length of the line between the regulator and INPUT pin. Be sure to connect C_{IN} to prevent parasitic oscillation. Use of a film capacitor or other capacitor with excellent voltage and temperature characteristics is recommended. If using a laminated ceramic capacitor, it is necessary to ensure that C_{IN} is $0.1~\mu\text{F}$ or higher for the voltage and temperature range to be used.
- ★ Cout: 47 μF or higher. Be sure to connect Cout to prevent oscillation and improve excessive load regulation. Place Cin and Cout as close as possible to the IC pins (within 2 cm). Also, use an electrolytic capacitor with low impedance characteristics if considering use at sub-zero temperatures.

D1: If the OUTPUT pin has a higher voltage than the INPUT pin, connect a diode.

D2: If the OUTPUT pin has a lower voltage than the GND pin, connect a Schottky barrier diode.

Caution Make sure that no voltage is applied to the OUTPUT pin from external.

4

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Type Number	CMIN.	TYP.	MAX.	Un
Input Voltage	Vin	μPC2933A	4.3	W	16	V
W.TW	100 7.	μPC2905A	60	M. T.	16	
Output Current	lo	All	0	Mil	1.0	А
Operating Ambient Temperature	TA	All	-30	$O_{M,I,\lambda}$	+85	°C
Operating Junction Temperature	TJ_1 100	All	-30	OWIT	+125	°C

ELECTRICAL CHARACTERISTICS

WWW.100Y.COM.TW

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo	W.100 COM.	3.18	3.3	3.42	V
	M	$0^{\circ}C \leq T_{J} \leq 125^{\circ}C, \ 4.3 \ V \leq V_{IN} \leq 16 \ V,$ $0 \ A \leq I_{O} \leq 500 \ mA$	3.14	N.100Y	3.46	IW
W.T. COMP.		$0^{\circ}C \le T_{J} \le 125^{\circ}C, \ 0 \ A \le I_{O} \le 1 \ A$	MM	100		I.TV
Line Regulation	REGIN	4.3 V ≤ V _{IN} ≤ 16 V	W	12	33	mV
Load Regulation	REG∟	0 A ≤ Io ≤ 1 A	V	23	33	WILL
Quiescent Current	IBIAS	lo = 0 A		2.0	3.0	mA
	7 1	lo = 1 A		20	40	OM.
Startup Quiescent Current	BIAS (s)	V _{IN} = 3.1 V, Io = 0 A	4 T	10	30	mA
	MITW	V _{IN} = 3.1 V, Io = 1 A		VV ·	80	COMI
Quiescent Current Change	ΔI BIAS	0°C ≤ T _J ≤ 125°C, 4.3 V ≤ V _{IN} ≤ 16 V	N	3.0	15	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz	IN	55	10 10	$\mu V_{r.m.s.}$
Ripple Rejection	R•R	4.3 V ≤ V _{IN} ≤ 16 V, f = 120 Hz	48	64	N 41	dB
Dropout Voltage	VDIF	0°C ≤ T _J ≤ 125°C, lo = 1 A	WT	0.7	1.0	N.C.
Short Circuit Current	lOpeak	V _{IN} = 4.5 V	1.2	1.6	3.0	AV
	COM.	V _{IN} = 16 V	DIVI	1.2	WWW	1.100X.C
Peak Output Current	lOpeak	V _{IN} = 4.5 V	1.0	1.4	3.0	Α
		V _{IN} = 16 V	1.3	1.7	2.8	W.100
Temperature Coefficient of Output Voltage	ΔVο /ΔΤ	0°C ≤ T _J ≤ 125°C, lo = 5 mA	.coM	-0.4	N	mV/°C

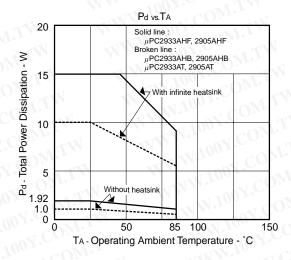
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 WW.100Y.COM.TW 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw

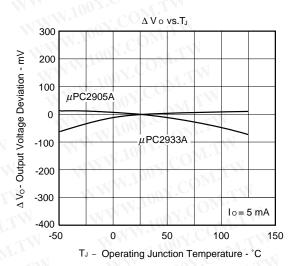
WWW.100Y.COM.TW

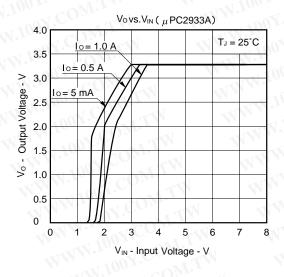
 μ PC2905A (T_J = 25°C, V_{IN} = 8 V, Io = 500 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified)

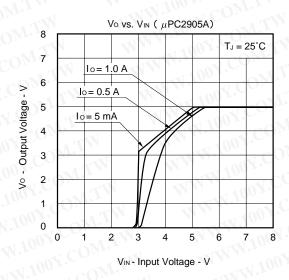
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo	M.TW WW. 1003	4.83	5.0	5.18	V
	100 Y.C.	$0^{\circ}C \le T_J \le 125^{\circ}C$, $6 \text{ V} \le V_{\text{IN}} \le 16 \text{ V}$, $0 \text{ A} \le lo \le 500 \text{ mA}$	4.75	LTW WT.1	5.25	
	W.100	$0^{\circ}C \le T_{J} \le 125^{\circ}C, \ 0 \ A \le I_{O} \le 1 \ A$	OUX.CO	NI.		
Line Regulation	REGIN	6 V ≤ V _{IN} ≤ 16 V	and C	23	50	mV
Load Regulation	REGL	0 A ≤ Io ≤ 1 A	700	28	50	mV
Quiescent Current	IBIAS	lo = 0 A	1.100	2.2	3.5	mA
Y.CO. TY	1	Io = 1 A	W.100x	28	50	
Startup Quiescent Current	BIAS (s)	V _{IN} = 4.5 V, I _O = 0 A	W.100	10	30	mA
WY.COM	MMM	V _{IN} = 4.5 V, I _O = 1 A	10	37.00	50	
Quiescent Current Change	$\Delta {\sf I}$ BIAS	$0^{\circ}C \le T_{J} \le 125^{\circ}C, 6 \text{ V} \le V_{IN} \le 16 \text{ V}$		2.9	15	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz	WWW.	90	JIV.	μ Vr.m.
Ripple Rejection	R•R	f = 120 Hz, 6 V ≤ V _{IN} ≤ 16 V	46	61	OM.	√ dB
Dropout Voltage	VDIF	0°C ≤ TJ ≤ 125°C, lo = 1 A		0.7	1.0	V
Short Circuit Current	Opeak	V _{IN} = 6.5 V	1.15	1.8	3.0	Α
100Y. COM.TW		V _{IN} = 16 V	NV V	1.1	7001	T.T.
Peak Output Current	lOpeak	V _{IN} = 6.5 V	1.1	1.5	3.0	Α
VVVV. 100Y.COM	N	V _{IN} = 16 V	1.4	2.0	2.8	T.Mo
Temperature Coefficient of Output Voltage	ΔVο /ΔΤ	0°C ≤ T _J ≤ 125°C, lo = 5 mA		0.6	100 Y.C	mV/°(

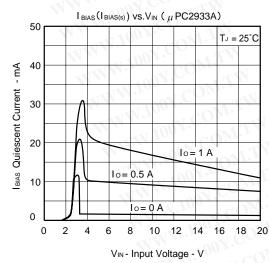
WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

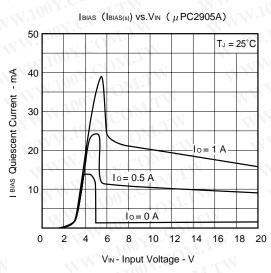

WW.100Y.COM.TW

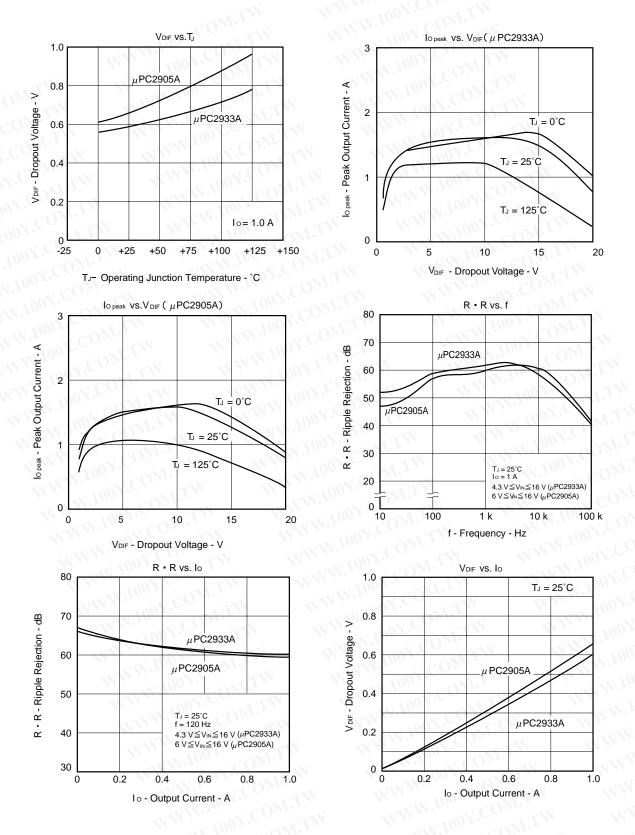

.com.TW

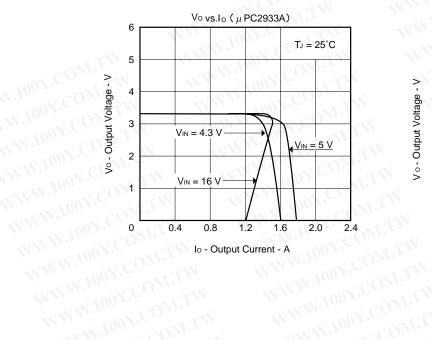

JY.COM.TW

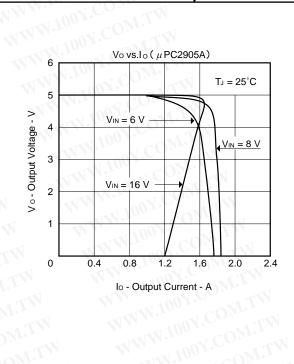

DOY.COM.TW


TYPICAL CHARACTERISTICS (Reference Values)









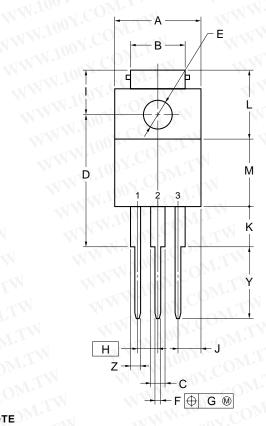
100Y.COM.TW

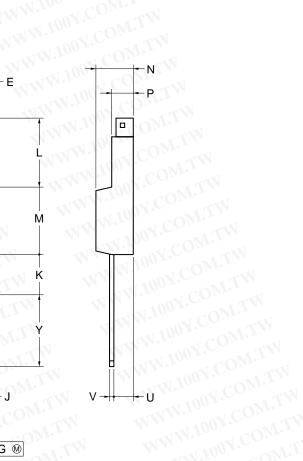
W.100Y.COM.TW

W.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw


WWW.100Y.COM.TW


WWW.100X

PACKAGE DRAWINGS

μPC2933AHF, 2905AHF

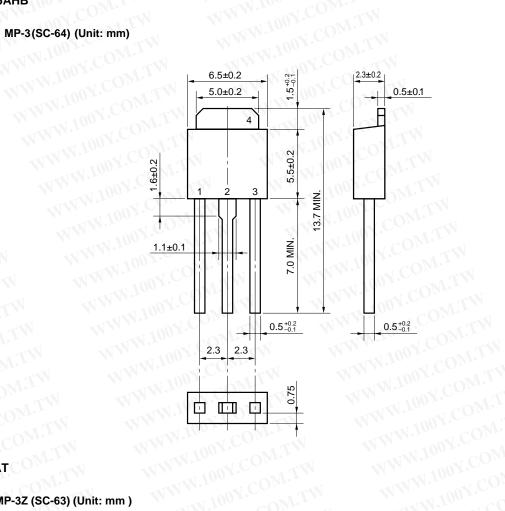
3PIN PLASTIC SIP (MP-45G)

WWW.100Y.COM.TV

WWW.100Y.

WWW.100Y.COM.TW

WWW.100Y.COM.TW Each lead centerline is located within 0.25 mm of its true position (T.P.) at maximum. WWW.100Y.COM.TW its true position (T.P.) at maximum material condition.


NWW.100X.COM.TW WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

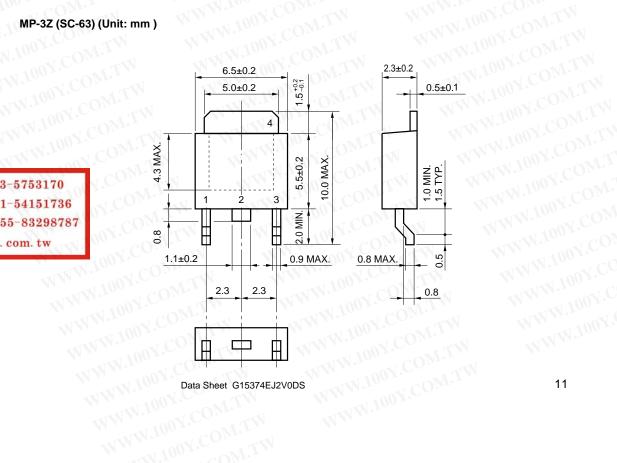
ITEM	MILLIMETERS	
A	10.0±0.2	
В	7.0±0.2	
C	1.50±0.2	
D	17.0±0.3	
Е	φ3.3±0.2	
F	0.75±0.10	
G	0.25	
H	2.54 (T.P.)	
N I	5.0±0.3	
J	2.46±0.2	
K	5.0±0.2	
CUL	8.5±0.2	
M	8.5±0.2	
N	4.5±0.2	
Р	2.8±0.2	
U	2.4±0.5	
V	0.65±0.10	
Y	8.9±0.7	
<u>z</u>	1.30±0.2	
	P3HF-254B-4	

P3HF-254B-4 WWW.100Y.COM.TW

μPC2933AHB, 2905AHB

MP-3(SC-64) (Unit: mm) WWW.1001

MY.COM.TW


WWW.100Y.COM.TW

WWW.1007.C

WWW.100Y.COM.TW μPC2933AT, 2905AT

MP-3Z (SC-63) (Unit: mm) WWW.100Y.C WWW.100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

11

RECOMMENDED SOLDERING CONDITIONS

When soldering this product, it is highly recommended to observe the conditions as shown below. If other soldering processes are used, or if the soldering is perfored under different condition, please make sure to consult with our sales offices.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL"

(C10535E).

Surface Mount Device

μPC2933AT, 2905AT: MP-3Z (SC-63)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Process	Conditions	Symbol
Infrared Ray Reflow	Peak temperature: 235°C or below (Package surface temperature), Reflow time: 30 seconds or less (at 210°C or higher), Maximum number of reflow processes: 2 times or less.	IR35-00-2
Vapor Phase Soldering	Peak temperature: 215°C or below (Package surface temperature), Reflow time: 40 seconds or less (at 200°C or higher), Maximum number of reflow processes: 2 times or less.	VP15-00-2
Wave Soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or less, Maximum number of flow processes: 1 time, Pre-heating temperature: 120°C or below (Package surface temperature).	WS60-00-1
Partial Heating Method	Pin temperature: 300°C or below, Heat time: 3 seconds or less (Per each side of the device).	10 N.CON.

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

Through-hole devices

μPC2933AHF, 2905AHI μPC2933AHB, 2905AH		
Process	Conditions	WW 100
Wave soldering	Solder temperature: 260°C or below,	WWW.
(only to leads)	Flow time: 10 seconds or less.	MMM.
Partial heating method	Pin temperature: 300°C or below,	WWW.
	Heat time: 3 seconds or less (Per each pin).	WW.

Caution For through-hole device, the wave soldering process must be applied only to leads, and make sure that the package body does not get jet soldered.

WW.100Y.COM.TW

WWW.100Y.COM.TW

NOTES ON USE

When the μ PC2933A, 2905A are used with an input voltage that is lower than the value indicated in the recommended operating conditions, a large quiescent current flows through the device due to saturation of the transistor of the output stage. (Refer to the IBIAS (IBIAS(S)) vs. VIN curves in TYPICAL CHARACTERISTICS).

These products have saturation protector, but a current of up to 80 mA MAX. may flow through the device. Thus the power supply on the input side must have sufficient capacity to allow this quiescent current to pass when the device starts up.

REFERENCE DOCUMENTS

Document Name	Document No.
QUALITY GRADES ON NEC SEMICONDUCTOR DEVICES	C11531E
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL	C10535E
VOLTAGE REGULATOR OF SMD	G11872E
SEMICONDUCTOR SELECTION GUIDE – PRODUCTS AND PACKAGES	X13769E

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

[MEMO]

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.C

OM.TW

[MEMO]

WWW.100X

WWW.100Y.COM.T

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW

Http://www. 100y. com. tw WWW.100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

- The information in this document is current as of September, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
 - No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
 - NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
 - Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
 - While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
 - NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

WWW.100Y.C

M8E 00.4