N-Channel Enhancement-Mode Vertical DMOS FETs

Ordering Information

$\begin{gathered} \mathrm{BV}_{\mathrm{DSS}} / \\ \mathrm{BV}_{\mathrm{DGS}} \end{gathered}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (max)	$\begin{aligned} & \mathrm{I}_{\mathrm{D}(\mathrm{ON})} \\ & (\mathrm{min}) \end{aligned}$	Order Number / Package
			TO-92
240 V	6.0Ω	1.0A	VN2406L
240 V	10Ω	1.0A	VN2410L

Features

- Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low $\mathrm{C}_{\text {ISS }}$ and fast switching speeds
- Excellent thermal stability
- Integral Source-Drain diode
- High input impedance and high gain
- Complementary N - and P-channel devices

Applications

- Motor controls
- Converters
- Amplifiers
- Switches
- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

Drain-to-Source Voltage	$\mathrm{BV}_{\text {DSS }}$
Drain-to-Gate Voltage	$\mathrm{BV}_{\text {DGS }}$
Gate-to-Source Voltage	$\pm 20 \mathrm{~V}$
Operating and Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature*	$300^{\circ} \mathrm{C}$

* Distance of 1.6 mm from case for 10 seconds.

Package	$\mathbf{I}_{\mathbf{D}}$（continuous）	$\mathbf{I}_{\mathbf{D}}$（pulsed）	Power Dissipation $@ \mathbf{T}_{\mathbf{C}}=\mathbf{2 5} \mathbf{C}$	θ_{jc} ${ }^{\circ} \mathbf{C} / \mathbf{W}$	θ_{ja} ${ }^{\circ} \mathbf{C} / \mathbf{W}$	$\mathbf{I}_{\mathbf{D R}}{ }^{*}$	$\mathbf{I}_{\mathbf{D R M}}$
$\mathrm{TO}-92$	0.9 A	5.0 A	1.0 W	125	170	0.18 A	1.7 A

${ }^{*} I_{D}$（continuous）is limited by max rated T_{i} ．

Electrical Characteristics（＠ $25^{\circ} \mathrm{C}$ unless otherwise specified）

Symbol	Parameter		Min	Typ	Max	Unit	Conditions
$B V_{\text {DSS }}$	Drain－to－Source Breakdown Voltage		240			V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage		0.8		2	V	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
$\mathrm{I}_{\text {GSS }}$	Gate Body Leakage				100	nA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current				10		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=120 \mathrm{~V}$
					500	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=120 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{D} \text {（ON）}}$	ON－State Drain Current		1.0			A	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text {（ON）}}$	Static Drain－to－Source ON－State Resistance	All			10		$\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$
		VN2410			10	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$
		VN2406			6		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$
$\Delta \mathrm{R}_{\mathrm{DS} \text {（ON）}}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with Temperature			1.0	1.4	\％／${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.55 \mathrm{~A}$
G_{FS}	Forward Transconductance		300			m\％	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$
$\mathrm{C}_{\text {ISS }}$	Input Capacitance				125		
$\mathrm{C}_{\text {Oss }}$	Common Source Output Capacitance				50	pF	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {RSS }}$	Reverse Transfer Capacitance				20		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn－ON Delay Time				8		
t_{r}	Rise Time				8	ns	$\begin{aligned} & V_{D D}=60 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.4 \mathrm{~A} \end{aligned}$
$\mathrm{t}_{\mathrm{d} \text {（OFF）}}$	Turn－OFF Delay Time				23	ns	$\mathrm{R}_{\mathrm{GEN}}=25 \Omega$
t_{f}	Fall Time				24		
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage Drop	VN2410		1.2		V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=0.19 \mathrm{~A}$
		VN2406		1.2		V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=0.8 \mathrm{~A}$

Notes：

1．All D．C．parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated．（Pulse test： $300 \mu \mathrm{~s}$ pulse， 2% duty cycle．）
2．All A．C．parameters sample tested．

Switching Waveforms and Test Circuit

11／12／01

