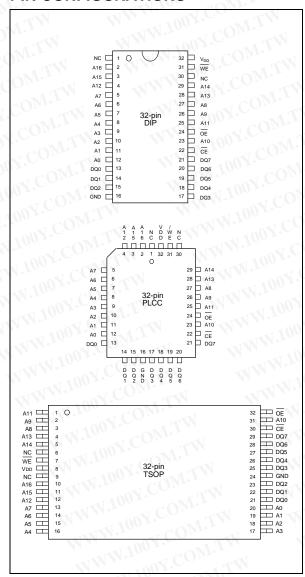


128K × 8 CMOS FLASH MEMORY

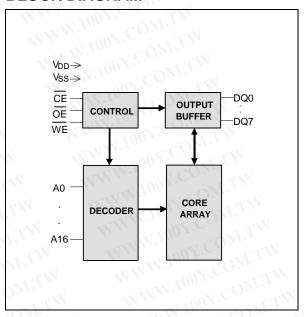
GENERAL DESCRIPTION

The W29EE011 is a 1-megabit, 5-volt only CMOS flash memory organized as $128K \times 8$ bits. The device can be programmed and erased in-system with a standard 5V power supply. A 12-volt VPP is not required. The unique cell architecture of the W29EE011 results in fast program/erase operations with extremely low current consumption (compared to other comparable 5-volt flash memory products). The device can also be programmed and erased using standard EPROM programmers.

FEATURES


- Single 5-volt program and erase operations
- · Fast page-write operations
 - 128 bytes per page
 - Page program cycle: 10 mS (max.)
 - Effective byte-program cycle time: 39 μS
 - Optional software-protected data write
- Fast chip-erase operation: 50 mS
- Read access time:70/90/120/150 nS
- Page program/erase cycles: 100/1K
- · Ten-year data retention
- · Software and hardware data protection

- · Low power consumption
 - Active current: 25 mA (typ.)
 - Standby current: 20 μA (typ.)
- Automatic program timing with internal VPP generation
- · End of program detection
 - Toggle bit
 - Data polling
- Latched address and data
- TTL compatible I/O
- · JEDEC standard byte-wide pinouts
- Available packages: 32-pin 600 mil DIP, 450 mil SOP,TSOP, and PLCC


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
A0-A16	Address Inputs
DQ0-DQ7	Data Inputs/Outputs
CE	Chip Enable
100 OE	Output Enable
WE	Write Enable
VDD	Power Supply
GND	Ground
NC	No Connection

WWW.100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W29EE011

FUNCTIONAL DESCRIPTION

Read Mode

The read operation of the W29EE011 is controlled by CE and OE, both of which have to be low for the host to obtain data from the outputs. \overline{CE} is used for device selection. When \overline{CE} is high, the chip is de-selected and only standby power will be consumed. \overline{OE} is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either \overline{CE} or \overline{OE} is high. Refer to the timing waveforms for further details.

Page Write Mode

The W29EE011 is programmed on a page basis. Every page contains 128 bytes of data. If a byte of data within a page is to be changed, data for the entire page must be loaded into the device. Any byte that is not loaded will be erased to "FFh" during programming of the page.

The write operation is initiated by forcing CE and WE low and OE high. The write procedure consists of two steps. Step 1 is the byte-load cycle, in which the host writes to the page buffer of the device. Step 2 is an internal programming cycle, during which the data in the page buffers are simultaneously written into the memory array for non-volatile storage.

During the byte-load cycle, the addresses are latched by the falling edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$, whichever occurs first. If the host loads a second byte into the page buffer within a byte-load cycle time (TBLc) of 200 μ S, after the initial byte-load cycle, the W29EE011 will stay in the page load cycle. Additional bytes can then be loaded consecutively. The page load cycle will be terminated and the internal programming cycle will start if no additional byte is loaded into the page buffer within 300 μ S (TBLco) from the last byte-load cycle, i.e., there is no subsequent $\overline{\text{WE}}$ high-to-low transition after the last rising edge of $\overline{\text{WE}}$. A7 to A16 specify the page address. All bytes that are loaded into the page buffer must have the same page address. A0 to A6 specify the byte address within the page. The bytes may be loaded in any order; sequential loading is not required.

In the internal programming cycle, all data in the page buffers, i.e., 128 bytes of data, are written simultaneously into the memory array. Before the completion of the internal programming cycle, the host is free to perform other tasks such as fetching data from other locations in the system to prepare to write the next page.

Software-protected Data Write

The device provides a JEDEC-approved optional software-protected data write. Once this scheme is enabled, any write operation requires a series of three-byte program commands (with specific data to a specific address) to be performed before the data load operation. The three-byte load command sequence begins the page load cycle, without which the write operation will not be activated. This write scheme provides optimal protection against inadvertent write cycles, such as cycles triggered by noise during system power-up and power-down.

The W29EE011 is shipped with the software data protection enabled. To enable the software data protection scheme, perform the three-byte command cycle at the beginning of a page load cycle. The device will then enter the software data protection mode, and any subsequent write operation must be preceded by the three-byte program command cycle. Once enabled, the software data protection will remain enabled unless the disable commands are issued. A power transition will not reset the software data protection feature. To reset the device to unprotected mode, a six-byte command sequence is required. See Table 3 for specific codes and Figure 10 for the timing diagram.

Publication Release Date: August 1998 Revision A11 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W29EE011

Hardware Data Protection

The integrity of the data stored in the W29EE011 is also hardware protected in the following ways:

- (1) Noise/Glitch Protection: A WE pulse of less than 15 nS in duration will not initiate a write cycle.
- (2) VDD Power Up/Down Detection: The programming operation is inhibited when VDD is less than 3.8V.
- (3) Write Inhibit Mode: Forcing \overline{OE} low, \overline{CE} high, or \overline{WE} high will inhibit the write operation. This prevents inadvertent writes during power-up or power-down periods.

Data Polling (DQ7)-Write Status Detection

The W29EE011 includes a data polling feature to indicate the end of a programming cycle. When the W29EE011 is in the internal programming cycle, any attempt to read DQ7 of the last byte loaded during the page/byte-load cycle will receive the complement of the true data. Once the programming cycle is completed. DQ7 will show the true data.

Toggle Bit (DQ6)-Write Status Detection

In addition to data polling, the W29EE011 provides another method for determining the end of a program cycle. During the internal programming cycle, any consecutive attempts to read DQ6 will produce alternating 0's and 1's. When the programming cycle is completed, this toggling between 0's and 1's will stop. The device is then ready for the next operation.

5-Volt-only Software Chip Erase

The chip-erase mode can be initiated by a six-byte command sequence. After the command loading cycles, the device enters the internal chip erase mode, which is automatically timed and will be completed in 50 mS. The host system is not required to provide any control or timing during this operation.

Product Identification

The product ID operation outputs the manufacturer code and device code. Programming equipment automatically matches the device with its proper erase and programming algorithms.

The manufacturer and device codes can be accessed by software or hardware operation. In the software access mode, a six-byte command sequence can be used to access the product ID. A read from address 0000H outputs the manufacturer code (DAh). A read from address 0001H outputs the device code (C1h). The product ID operation can be terminated by a three-byte command sequence.

In the hardware access mode, access to the product ID is activated by forcing \overline{CE} and \overline{OE} low, \overline{WE} high, and raising A9 to 12 volts.

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

W29EE011

COM.TW

WWW.100Y.COM

MMM. Ing

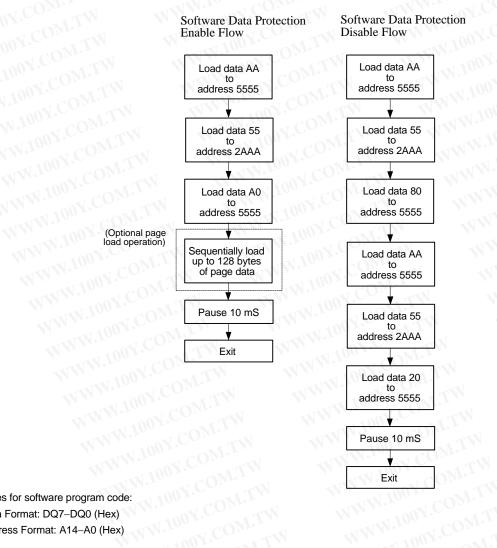
TABLE OF OPERATING MODES

W.100X.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW MMM.100X.COW.TM

WWW.100Y.COM.

MODE	You	Co	VIIV	PINS	.Com.TN
	CE	ŌĒ	WE	ADDRESS	DQ.
Read	VIL	VIL	VIH	Ain	Dout
Write	VIL	VIH	VIL	Ain	Din
Standby	VIH	X	Χ	X	High Z
Write Inhibit	Х	VIL	X	X	High Z/Dout
	X	Χ	VIH	X	High Z/Douт
Output Disable	X	VIH	X	X	High Z
5-Volt Software Chip Erase	VIL	VIH	VIL	Ain	DIN
Product ID	VIL	VIL	Vih	A0 = VIL; A1-A16 = VIL; A9 = VHH	Manufacturer Code DA (Hex)
	VIL	VIL	VIH	A0 = VIH; A1-A16 = VIL; A9 = VHH	Device Code C1 (Hex)

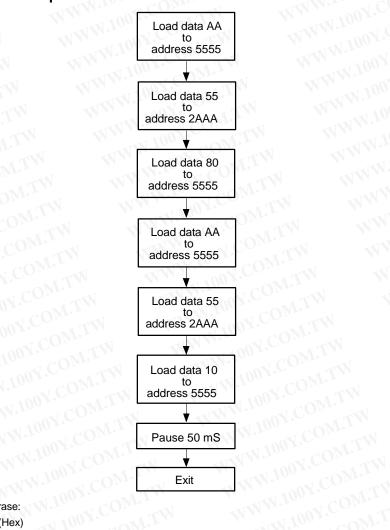

Revision A11

Command Codes for Software Data Protection

BYTE SEQUENCE	TO ENABLE PRO	TECTION	TO DISABLE PROT	ECTION
WWW WWW	ADDRESS	DATA	ADDRESS	DATA
0 Write	5555H	AAH	5555H	AAH
1 Write	2AAAH	55H	2AAAH	55H
2 Write	5555H	A0H	5555H	√ 80H
3 Write	11.100 F. COM.T	- 11	5555H	AAH
4 Write	1007.COM	IN -	2AAAH	55H
5 Write	MAN CO.	- W	5555H	20H

Sofware Data Protection Acquisition Flow

Notes for software program code: Data Format: DQ7-DQ0 (Hex) Address Format: A14-A0 (Hex)

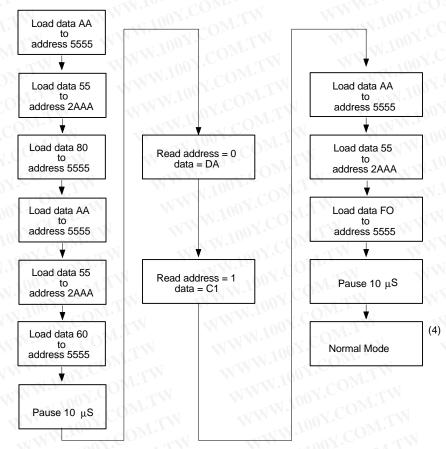


Command Codes for Software Chip Erase

BYTE SEQUENCE	ADDRESS	DATA
0 Write	5555H	AAH
1 Write	2AAAH	55H
2 Write	5555H	80H
3 Write	5555H	AAH
4 Write	2AAAH	55H
5 Write	5555H	CO10F

Sofware Chip Erase Acquisition Flow WWW.100Y.CC

Address Format: A14–A0 (Hex) WWW.100Y.COM.TW WWW.100Y.COM.TW



Command Codes for Product Identification

BYTE SEQUENCE	SOFTWARE IDENTIFICAT		SOFTWARE IDENTIFICAT	
M.TW WY	ADDRESS	DATA	ADDRESS	DATA
0 Write	5555H	AAH	5555H	AAH
1 Write	2AAAH	55H	2AAAH	55H
2 Write	5555H	80H	5555H	F0H
3 Write	5555H	AAH	100 CO	VI. 1
4 Write	2AAAH	55H	MA. 100 A.C.	M.TW-
5 Write	5555H	60H	MAN.	TI
COM.	Pause	10 μS	Pause	10 μS

Software Product Identification Acquisition Flow

Product Identification Entry(1) Product Identification Mode(2, 3) Product Identification Exit(1)

Notes for software product identification:

- (1) Data format: DQ7-DQ0 (Hex); address format: A14-A0 (Hex).
- WWW.100Y.COM.T (2) A1-A16 = VIL; manufacture code is read for A0 = VIL; device code is read for A0 = VIH.
- (3) The device does not remain in identification mode if power down.
- (4) The device returns to standard operation mode.

DC CHARACTERISTICS

Absolute Maximum Ratings

DC CHARACTERISTICS		
Absolute Maximum Ratings	1001. OM.TW	
PARAMETER	RATING	UNIT
Power Supply Voltage to Vss Potential	-0.5 to +7.0	V
Operating Temperature	0 to +70	°C
Storage Temperature	-65 to +150	°C
D.C. Voltage on Any Pin to Ground Potential except OE	-0.5 to VDD +1.0	N V
Transient Voltage (< 20 nS) on Any Pin to Ground Potential	-1.0 to VDD +1.0	V
Voltage on OE Pin to Ground Potential	-0.5 to 12.5	V

WWW.100Y.COM

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

Operating Characteristics

PARAMETER	SYM.	TEST CONDITIONS	- 1	LIMITS		UNIT
VI 100Y.CO.TW		WW 100Y. COMITW	MIN.	TYP.	MAX.	MTY
Power Supply Current	V Icc	CE = OE = VIL, WE = VIH, all I/Os open Address inputs = VIL/VIH, at f = 5 MHz	- \	MMM.	50	mA
Standby VDD Current (TTL input)	ISB1	CE = VIH, all I/Os open Other inputs = VIL/VIH	TW.	2	W.300	mA
Standby VDD Current (CMOS input)	ISB2	CE = VDD -0.3V, all I/Os open Other inputs = VDD -0.3V/GND	LTW M.TW	20	100	μА
Input Leakage Current	ILI	VIN = GND to VDD	TW	-	1	μΑ
Output Leakage Current	ClLO	VIN = GND to VDD	OM.TY	V -	10	μА
Input Low Voltage	VIL	W.I.MM. I.M. 100 x.	-0.3	-	0.8	V
Input High Voltage	ViH	DWIN - WWW.1003	2.0	TW.	VDD +0.5	V
Output Low Voltage	Vol	IOL = 2.1 mA	V.GON	W	0.45	V
Output High Voltage	Vон	IOH = -0.4 mA	2.4	VI. 1	-	V

Power-up Timing

PARAMETER	SYMBOL	TYPICAL	UNIT
Power-up to Read Operation	Tpu.READ	100	μS
Power-up to Write Operation	TPU.WRITE	5	mS V
		Publication Releas	
	7. COM-9-W	Publication Releas	e Date: August 199 Revision A1

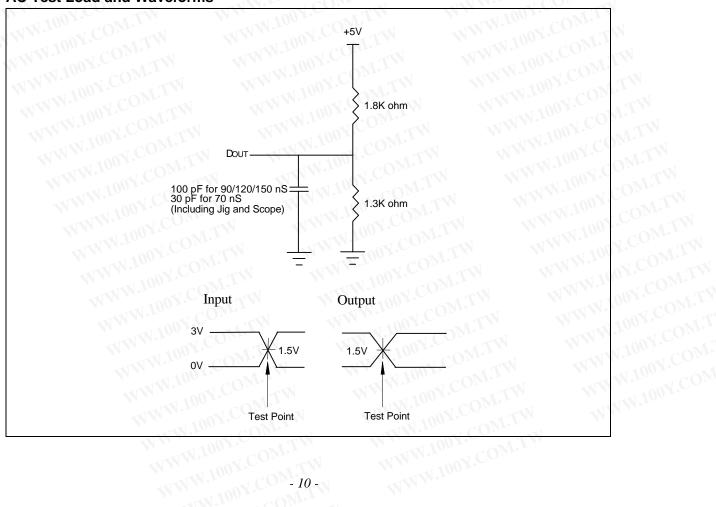
M.TW

100Y.COM.TV

N.100Y.COM.T

COM.TW

CAPACITANCE


PARAMETER	SYMBOL	CONDITIONS	MAX.	UNIT
I/O Pin Capacitance	CI/O	VI/O = 0V	12	pF
Input Capacitance	CIN	VIN = 0V	6	pF

WWW.100Y.COM.TW **AC CHARACTERISTICS**

AC Test Conditions

AC CHARACTERISTICS AC Test Conditions	
(VDD = 5V ±10%)	
PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3V
Input Rise/Fall Time	< 5 nS
Input/Output Timing Level	1.5V/1.5V
Output Load	1 TTL Gate and CL = 30 pF for 70 nS and 100 pF for others.

AC Test Load and Waveforms

Http://www.100y.com.tw

W29EE011

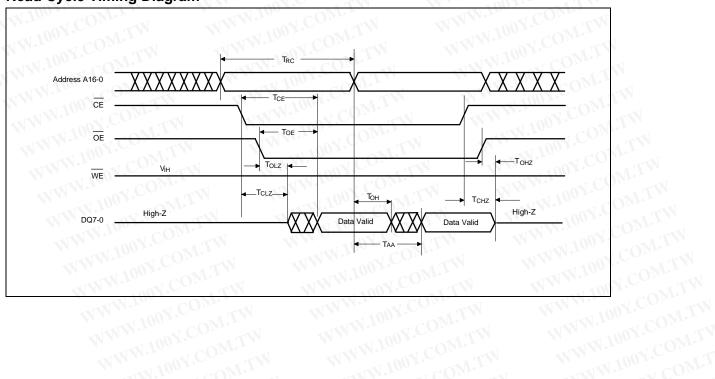
Read Cycle Timing Parameters

(Vcc = $5.0V \pm 10\%$, Vcc = $5.0 \pm 5\%$ for 70 nS, Vss = 0V, TA = 0 to 70° C)

PARAMETER	SYM.	W29E	E011-70	W29EI	E011-90	W29E	E011-12	W29E	E011-15	UNIT
	Joo.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Ì
Read Cycle Time	Trc	70	Ţ.	90	WW	120	N.CO	150	N -	nS
Chip Enable Access Time	TCE	J CO	70	-	90	Wie	120	DIAT.	150	nS
Address Access Time	TAA	- ₹1 C(70	-	90	WW.	120	OM.	150	nS
Output Enable Access Time	TOE	0 7.	35	- XI	45	WW	60	$c_{\Theta M}$	70	nS
CE Low to Active Output	Tclz	0.0	-OM	0	-	0	1.100 x	001	I.T.	nS
OE Low to Active Output	Tolz	0	COM	0	-	0	W.100	0	$M^{-\frac{1}{2}}$	nS
CE High to High-Z Output	Тснz	1.750	45	1.1	45	N.	45	5 - C'	45	nS
OE High to High-Z Output	Тонz	W.40	45	W-I.	45	-	45	JU 2.	45	nS
Output Hold from Address Change	Тон	0.1	OON.C	0.0		0	WW.	001	COM	nS

Byte/Page-write Cycle Timing Parameters

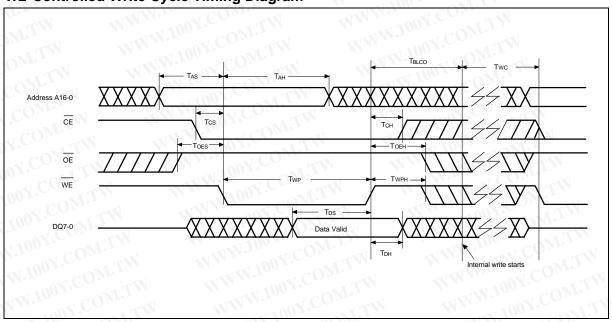
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Write Cycle (Erase and Program)	Twc	PT	-WW	10	mS
Address Setup Time	Tas	0	- 111	11/4.5	nS
Address Hold Time	TAH	50	- 🔨	M. In	nS
WE and CE Setup Time	Tcs	ONO	-	MANTE	nS
WE and CE Hold Time	Тсн	COO	-	WEW.	nS
OE High Setup Time	Toes	10	- W	WWW	nS
OE High Hold Time	Тоен	10	TW-	W.	nS
CE Pulse Width	Тср	70	TV	WW	nS
WE Pulse Width	TWP	70	WT	- 111	nS
WE High Width	TWPH	150	W	- 1/	nS
Data Setup Time	Tos	50	OM.	-	nS
Data Hold Time	Трн	10	ON	ı -	nS
Byte Load Cycle Time	TBLC	0.22	COJ-V.	200	μS
Byte Load Cycle Time-out	Твьсо	300	COM!	-	μS

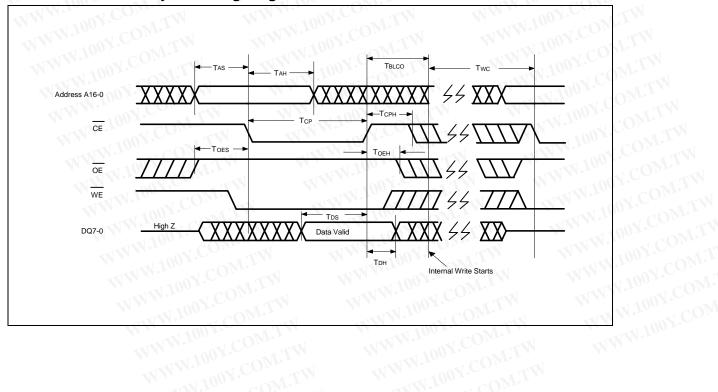


Data Polling and Toggle Bit Timing Parameters

PARAMETER	SYM.	W29EE011-70		W29EE011-90		W29EE011-12		W29EE011-15		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
OE to Data Polling Output Delay	ТОЕР	OW.	35	- 1	45	1007	60	I.T-W	70	nS
CE to Data Polling Output Delay	ТСЕР	COM	70	-	90	N.100	120	M.T	150	nS
OE to Toggle Bit Output Delay	Тоет	Y.Co.	35	- N	45	WW.	60	COM	70	nS
CE to Toggle Bit Output Delay	Тсет	oox.C	70	W.	90	W.	120	CON	150	nS

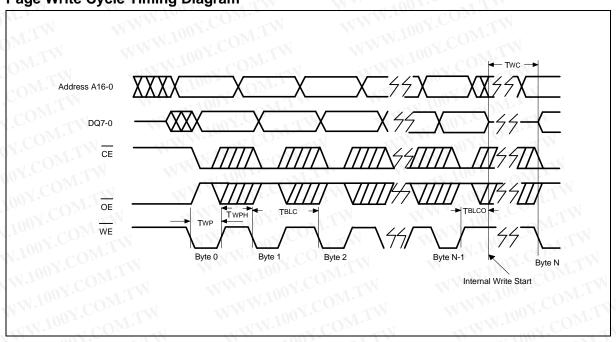
WWW.100X. **TIMING WAVEFORMS**

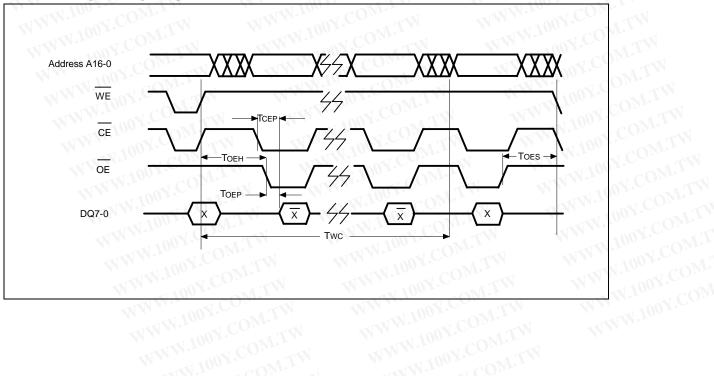

Read Cycle Timing Diagram



Timing Waveforms, continued

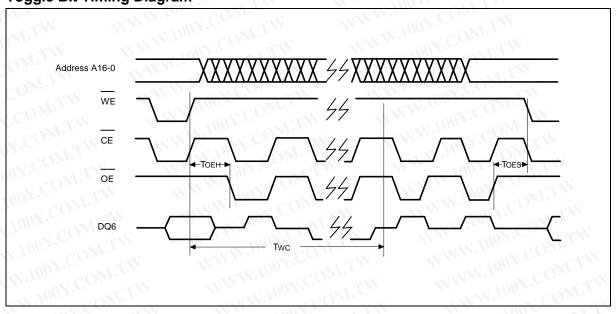
WE Controlled Write Cycle Timing Diagram

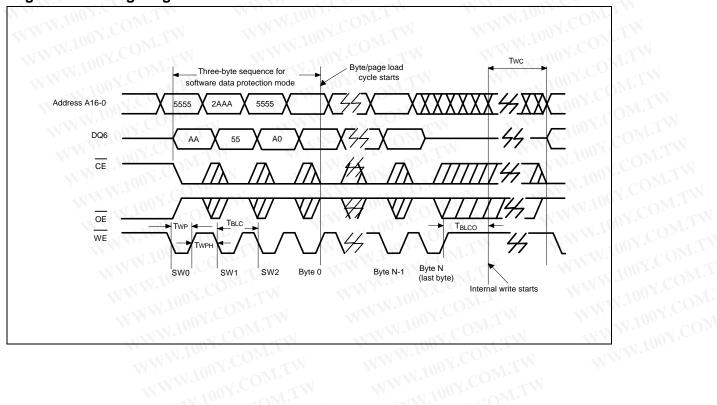

CE Controlled Write Cycle Timing Diagram



Timing Waveforms, continued

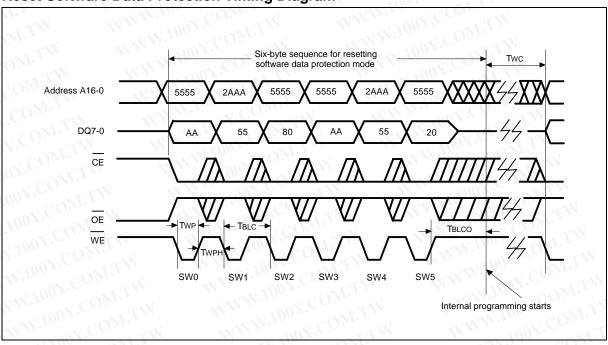
Page Write Cycle Timing Diagram

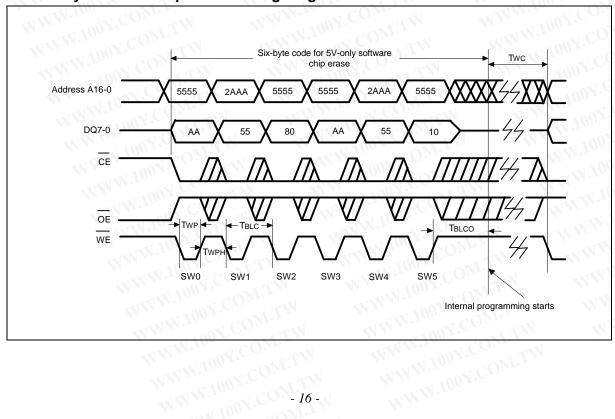

DATA Polling Timing Diagram



Timing Waveforms, continued

Toggle Bit Timing Diagram


Page Write Timing Diagram Software Data Protection Mode



Timing Waveforms, continued

Reset Software Data Protection Timing Diagram

5 Volt-only Software Chip Erase Timing Diagram

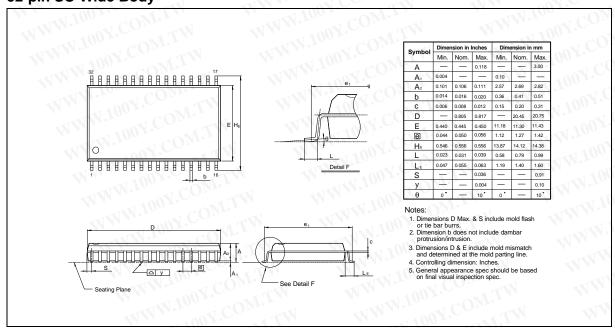
Http://www.100y.com.tw

ORDERING INFORMATION

PART NO.	ACCESS TIME (nS)	POWER SUPPLY CURRENT MAX. (mA)	STANDBY VDD CURRENT MAX. (mA)	PACKAGE	CYCLING
W29EE011-70A	70	50	100	600 mil DIP	100
W29EE011-90A	90	50	100	600 mil DIP	100
W29EE011-12A	120	50	100	600 mil DIP	100
W29EE011-15A	150	50	100	600 mil DIP	100
W29EE011S-70A	70	50	100	450 mil SOP	100
W29EE011S-90A	90	50	100	450 mil SOP	100
W29EE011S-12A	120	50	100	450 mil SOP	100
W29EE011S-15A	150	50	100	450 mil SOP	100
W29EE011S-70A	70	50	100	450 mil TSOP	100
W29EE011S-90A	90	50	100	450 mil TSOP	100
W29EE011S-12A	120	50	100 V	450 mil TSOP	100
W29EE011S-15A	150	50	100	450 mil TSOP	100
W29EE011P-70A	70	50	100	32-pin PLCC	100
W29EE011P-90A	90	50	100	32-pin PLCC	100
W29EE011P-12A	120	50	100	32-pin PLCC	100
W29EE011P-15A	150	50	100	32-pin PLCC	100
W29EE011-70	70	50	100	600 mil DIP	1K
W29EE011-90	90	50	100	600 mil DIP	1K
W29EE011-12	120	50	(100	600 mil DIP	1K CO
W29EE011-15	150	50	100	600 mil DIP	1K
W29EE011S-70	70	50	100	450 mil SOP	1K
W29EE011S-90	90	50	100	450 mil SOP	1K
W29EE011S-12	120	50	100	450 mil SOP	1K
W29EE011S-15	150	50	100	450 mil SOP	1K
W29EE011S-70	70	50	100	450 mil TSOP	1K
W29EE011S-90	90	50	100	450 mil TSOP	1K
W29EE011S-12	120	50	100	450 mil TSOP	1K
W29EE011S-15	150	50	100	450 mil TSOP	1K
W29EE011P-70	70	50	100	32-pin PLCC	1K
W29EE011P-90	90	50	100	32-pin PLCC	1K
W29EE011P-12	120	50	100	32-pin PLCC	1K 1K
W29EE011P-15	150	50	100	32-pin PLCC	1K

Notes:

- 1. Winbond reserves the right to make changes to its products without prior notice.
- 2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

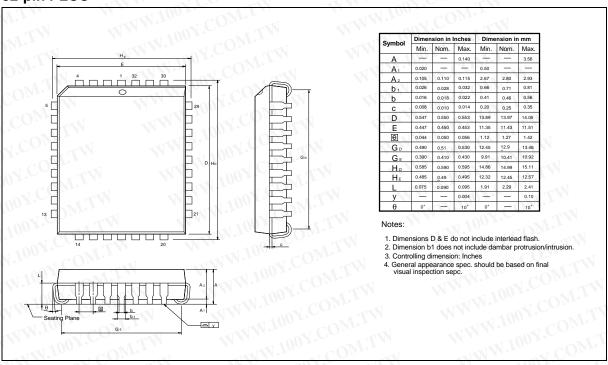


PACKAGE DIMENSIONS

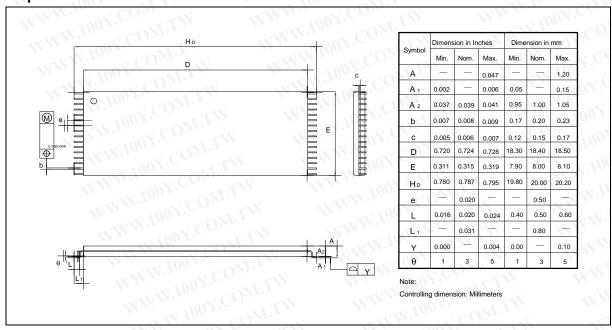
32-pin P-DIP

32-pin SO Wide Body

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787


Http://www. 100y. com. tw

W29EE011



Package Dimensions, continued

32-pin PLCC

32-pin TSOP

WWW.100Y.COM.TW

VERSION HISTORY

VERSION A9	DATE Feb. 1998	PAGE 6	Add. pause 10 mS		
M. INS	1 65. 1000	100Y C7 M.TV	Add. pause 50 mS		
	MMM	8 VOOT	Correct the time 10 mS to 10 µS		
	WW	1, 17	Add. cycing 100 item		
A10	Jun. 1998	1, 10, 11, 12, 17	Add. 70 nS bining		
A11	Aug. 1998	1, 2, 17, 19	Add. TSOP package		

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5796096

http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-27197006

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-27190505

FAX: 886-2-27197502

Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II, 123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

WWW.100Y.COM.TW

W.100Y.COM.TW Winbond Electronics North America Corp.
Winbond Memory Lab.
Winbond Microsci WWW.100Y.COM.TW WWW.100Y.COM.TV Winbond Microelectronics Corp. Winbond Systems Lab. 2727 N. First Street, San Jose. CA 95134, U.S.A. TEL: 408-9436666 WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.TV

WWW.100X;

Note: All data and specifications are subject to change without notice. MMM.100X.COM