

8-BIT MICROCONTROLLER

W78E516B

GENERAL DESCRIPTION

The W78E516B is an 8bit microcontroller which has an in-system programmable FLASH-ROM for firmware updating. The instruction set of the W78E516B is fully compatible with the standard 8052. The W78E516B contains a 64K bytes of main FLASH-ROM and a 4K bytes of auxiliary FLASH-ROM which allows the contents of the 64KB main FLASH-ROM to be updated by the loader program located at the 4KB auxiliary FLASH-ROM; 512 bytes of on-chip RAM; four 8-bit bi-directional and bit-addressable I/O ports; an additional 4-bit port P4; three 16-bit timer/counters; a serial port. These peripherals are supported by a eight sources two-level interrupt capability. To facilitate programming and verification, the FLASH-ROM inside the W78E516B allows the program memory to be programmed and read electronically. Once the code is confirmed, the user can protect the code for security.

The W78E516B microcontroller has two power reduction modes, idle mode and power-down mode, both of which are software selectable. The idle mode turns off the processor clock but allows for continued peripheral operation. The power-down mode stops the crystal oscillator for minimum power consumption. The external clock can be stopped at any time and in any state without affecting the processor.

FEATURES

- Fully static design 8-bit CMOS microcontroller up to 40 MHz.
- 64K bytes of in-system programmable FLASH-ROM for Application Program (APROM).
- 4K bytes of auxiliary FLASH-ROM for Loader Program (LDROM).
- 512 bytes of on-chip RAM. (including 256 bytes of AUX-RAM, software selectable)
- 64K bytes program memory address space and 64K bytes data memory address space.
- Four 8-bit bi-directional ports.
- One 4-bit multipurpose programmable port.
- Three 16-bit timer/counters
- One full duplex serial port
- Six-sources, two-level interrupt capability
- Built-in power management
- Code protection
- Packaged in
 - DIP 40: W78E516B-24/40
 - PLCC 44: W78E516BP-24/40

W.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

1001

M.T.W

COM.TW

100X.COM.TW W78E516B

W.100Y.COM.

WWW.100Y.CO

WWW.100Y.CO

WWW.100Y

WWW.100

WWW

COM.TW

M.TW

DM.TW OM.TW

L.COM.TW

OY.COM.TW

00Y.COM.TW

100Y.COM.TV

W.100Y.COM.T

W.100Y.COM.

WW.100Y.COM

WWW.100Y.CC

WWW.10 Y.COM.TW

WW.100X.COM.TW

WWW.100

WWW.100X.

PIN CONFIGURATIONS WWW.100Y.COM.TW

WWW.100Y.COM.TW

Winbond

WWW.100Y.C

40-pin DIP (W78E516B)

T2, P1.0	Б	$1 \cup$	40		
T2EX, P1.1	Ц	2	39 🗆	□ P0.0, AD0	
P1.2	С	3	38	D P0.1, AD1	
P1.3		4	37	P0.2, AD2	
P1.4	С	5	36	P0.3, AD3	
P1.5	С	6	35	D0.4, AD4	
P1.6	С	7	34	□ P0.5, AD5	
P1.7	С	8	33	P0.6, AD6	
RST	С	9	32	□ P0.7, AD7	
RXD, P3.0	С	10	31		
TXD, P3.1	С	11	30 🗆	⊐ ALE	
INT0, P3.2	Ц	12	29	PSEN	
INT1, P3.3		13	28	P2.7, A15	
T0, P3.4		14	27	P2.6, A14	
<u>T1</u> , P3.5	Е	15	26	P2.5, A13	
WR, P3.6		16	25	□ P2.4, A12	
RD, P3.7	Ц	17	24	□ P2.3, A11	
XTAL2	E.	18	23	P2.2, A10	
XTAL1	Ц	19	22	□ P2.1, A9	
VSS	Ę	20	21	□ P2.0, A8	
		-1			

WWW.100Y.COM.TW

VSS 4 20	21 P2.0, A8			
14-nin PLCC (V	V78F516BP)			
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 : 17 18 19 20 21 22 23 : 17 P P X X V P 3 3 T T S 4 . A A S . 6 7 L L 0 , 7 2 1 / / /	39] 38] 37] 36] 36] 35] 34] 7 33] 32] 31] 32] 31] 29] 24 25 26 27 28 ☐ 29] 24 25 26 27 28 ☐ 29] 21] 22 2 2 2 2 2 2 2 2 2 0 1 2 3 4 À À À À À À À	P0.5, AD5 P0.6, AD6 P0.7, AD7 EA P4.1 ALE PSEN P2.7, A15 P2.6, A14		
	4-pin PLCC (V T E T X 2 P P P P P P P 1 1 1 1 1 4 4 3 2 1 0 2 1 1 1 1 1 4 4 3 2 1 0 2 1 0 2 1 1 1 1 1 1 4 4 3 2 1 0 2 1 0 2 1 1 1 1 1 1 4 4 3 2 1 0 2 1 0 2 1 1 1 1 1 1 4 1 4 1 5 16 1 7 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 : P P X X V P 3 3 T S 4 6 7 L 5 0	4-pin PLCC (W78E516BP) T 2 $E T$ D D D X 2 0 1 2 3 P P P P P P P P P P P P P P P P P P	4-pin PLCC (W78E516BP) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	4-pin PLCC (W78E516BP) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

W78E516B

linbond

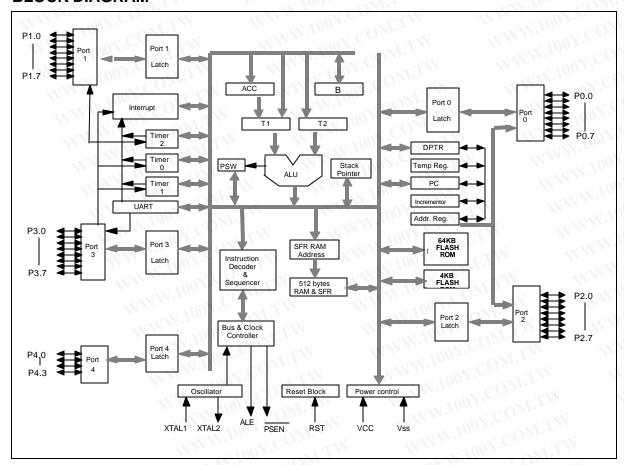
PIN DESCRIPTION

SYMBOL	TYPE	DESCRIPTIONS
ĒĀ	1007.CC	EXTERNAL ACCESS ENABLE: This pin forces the processor to execute the external ROM. The ROM address and data will not be presented on the bus if the \overrightarrow{EA} pin is high.
PSEN	ОН	PROGRAM STORE ENABLE: PSEN enables the external ROM data in the Por 0 address/data bus. When internal ROM access is performed, no PSEN strobe signal outputs originate from this pin.
ALE	ОН	ADDRESS LATCH ENABLE: ALE is used to enable the address latch that separates the address from the data on Port 0. ALE runs at 1/6th of the oscillator frequency.
RST	N NEW	RESET: A high on this pin for two machine cycles while the oscillator is running resets the device.
XTAL1	NN.	CRYSTAL 1: This is the crystal oscillator input. This pin may be driven by an external clock.
XTAL2	0	CRYSTAL 2: This is the crystal oscillator output. It is the inversion of XTAL1.
Vss		GROUND: ground potential.
VDD	Π,	POWER SUPPLY: Supply voltage for operation.
P0.0-P0.7	I/O D	PORT 0: Function is the same as that of standard 8052.
P1.0-P1.7	I/O H	PORT 1: Function is the same as that of standard 8052.
P2.0–P2.7	I/O H	PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the upper address bits for accesses to external memory.
P3.0–P3.7	I/O H	PORT 3: Function is the same as that of the standard 8052.
P4.0-P4.3	I/O H	PORT 4: A bi-directional I/O. See details below.

* Note: TYPE I: input, O: output, I/O: bi-directional, H: pull-high, L: pull-low, D: open drain

PORT4

Another bit-addressable port P4 is also available and only 4 bits (P4<3:0>) can be used. This port WWW.100Y.COM.TW address is located at 0D8H with the same function as that of port P1,


Example:

P4	REG 0D8H	WWW.Loony.COM.
MOV	P4, #0AH	; Output data "A" through P4.0-P4.3.
MOV	A, P4	; Read P4 status to Accumulator.
SETB	P4.0	; Set bit P4.0
CLR	P4.1	; Clear bit P4.1

W78E516B

BLOCK DIAGRAM

Vinbond

FUNCTIONAL DESCRIPTION

The W78E516B architecture consists of a core controller surrounded by various registers, four general purpose I/O ports, one special purpose programmable 4-bits I/O port, 512 bytes of RAM, three timer/counters, a serial port and an internal 74373 latch and 74244 buffer which can be switched to port2. The processor supports 111 different opcodes and references both a 64K program address space and a 64K data storage space.

RAM

The internal data RAM in the W78E516B is 512 bytes. It is divided into two banks: 256 bytes of scratchpad RAM and 256 bytes of AUX-RAM. These RAMs are addressed by different ways.

• RAM 0H–127H can be addressed directly and indirectly as the same as in 8051. Address pointers are R0 and R1 of the selected register bank.

• RAM 128H–255H can only be addressed indirectly as the same as in 8051. Address pointers are R0, R1 of the selected registers bank.

 AUX-RAM 0H–255H is addressed indirectly as the same way to access external data memory with the MOVX instruction. Address pointer are R0 and R1 of the selected register bank and DPTR register. An access to external data memory locations higher than 255H will be performed with the MOVX instruction in the same way as in the 8051. The AUX-RAM is disable after a reset. Setting the bit 4 in CHPCON register will enable the access to AUX-RAM. When AUX-RAM is enabled the instructions of "MOVX @Ri" will always access to on-chip AUX-RAM. When executing from internal program memory, an access to AUX-RAM will not affect the Ports P0, P2, WR and RD.

Timers 0, 1, and 2

Timers 0, 1, and 2 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0, TL1 and TH1 for Timer 1, and TL2 and TH2 for Timer 2. The TCON and TMOD registers provide control functions for timers 0, 1. The T2CON register provides control functions for Timer 2. RCAP2H and RCAP2L are used as reload/capture registers for Timer 2. The operations of Timer 0 and Timer 1 are the same as in the W78C51. Timer 2 is a 16-bit timer/counter that is configured and controlled by the T2CON register. Like Timers 0 and 1, Timer 2 can operate as either an external event counter or as an internal timer, depending on the setting of bit C/T2 in T2CON. Timer 2 has three operating modes: capture, auto-reload, and baud rate generator. The clock speed at capture or auto-reload mode is the same as that of Timers 0 and 1.

Clock

The W78E516B is designed with either a crystal oscillator or an external clock. Internally, the clock is divided by two before it is used by default. This makes the W78E516B relatively insensitive to duty cycle variations in the clock.

Crystal Oscillator

The W78E516B incorporates a built-in crystal oscillator. To make the oscillator work, a crystal must be connected across pins XTAL1 and XTAL2. In addition, a load capacitor must be connected from each pin to ground, and a resistor must also be connected from XTAL1 to XTAL2 to provide a DC bias when the crystal frequency is above 24 MHz.

External Clock

An external clock should be connected to pin XTAL1. Pin XTAL2 should be left unconnected. The XTAL1 input is a CMOS-type input, as required by the crystal oscillator. As a result, the external clock signal should have an input one level of greater than 3.5 volts.

Power Management

Idle Mode

Setting the IDL bit in the PCON register enters the idle mode. In the idle mode, the internal clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The processor will exit idle mode when either an interrupt or a reset occurs.

Power-down Mode

When the PD bit in the PCON register is set, the processor enters the power-down mode. In this mode all of the clocks are stopped, including the oscillator. To exit from power-down mode is by a hardware reset or external interrupts INTO to INT1 when enabled and set to level triggered.

Reduce EMI Emission

W78E516B

W78E516B

Electronics Corp.

The W78E516B allows user to diminish the gain of on-chip oscillator amplifier by using programmer to clear the B7 bit of security register. Once B7 is set to 0, a half of gain will be decreased. Care must be taken if user attempts to diminish the gain of oscillator amplifier, reducing a half of gain may affect the external crystal operating improperly at high frequency above 24 MHz. The value of R and C1, C2 may need some adjustment while running at lower gain.

Reset

The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to deglitch the reset line when the W78E516B is used with an external RC network. The reset logic also has a special glitch removal circuit that ignores glitches on the reset line. During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of bit 4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.

								1	
F8			001.001	1.1		W.100 -		-1	FF
		WWW.	N.CO	Wn					
F0	+B	WW	100 - 00	Nr.		WW.LO	CHPENR	N.	F7
	00000000	N.	N 100Y.	M.T.W		N.10	00000000		
E8		N/N	.V.	WT			N	NT	EF
			W.100-	COM.	KT.	.WW.L		In	-
E0	+ACC	W. A.	1001	T.Mo			00	1.1	E7
	00000000	N	111.001	COM AN	N	MW.		WT I	
D8	+P4		WW.	COM.		WW.	·** CO	W	DF
	xxxx1111	V	W.100	Mon	T.M.			DW.I.	
D0	+PSW		NN	OY.C.	WT.	AL.	1001.	M.T.W	D7
	00000000		WWW.L	OD CON	W	WW		W	
C8	+T2CON		RCAP2L	RCAP2H	TL2	TH2	NW.IOU	COM	CF
	00000000		00000000	00000000	00000000	00000000		. M.TV	
C0	XICON		WWW	N.C	SFRAL	SFRAH	SFRFD	SFRCN	C7
	00000000			N.100	00000000	00000000	00000000	00000000	
B8	+IP		1111	-11001.	I.M.		10	CHPCON	BF
	00000000		WW	YooN	COnt	N		0xx00000	W
B0	+P3			NW.10	COM		WW.	N CON	B7
	00000000			100	Mon			1001.001	1.1
A8	+IE		1	WWWWWWWW	N.Con	WT	WW	1001.00	AF
	00000000			.WW.Lo		·		1.1° N.CC	J. L.
A0	+P2			1.1		1.1		N.100 F	A7
	11111111			WW	10Y.CO	WITT			
98	+SCON	SBUF		WWW.	N.CC	Wn			9F
	00000000	xxxxxxx		VI	100 1	OW.			
90	+P1			N. A.	N 1001.	_			97
	11111111			WW	1.1				
88	+TCON	TMOD	TL0	TL1	TH0	TH1			8F
	00000000	00000000	00000000	00000000	00000000	00000000			

W78E516B Special Function Registers (SFRs) and Reset Values

		nd borp.	月	生特力电子(生特力电子(* 料 886-3-5753] 上海)86-21-5415] 案圳) 86-755-8329 ww. 100y. com. tv	1736 98787	W78E516B		
80	+P0 11111111	SP 00000111	DPL 00000000	DPH 00000000	00X.COM.IV		PCON 00110000	87	

Notes:

1. The SFRs marked with a plus sign(+) are both byte- and bit-addressable.

2. The text of SFR with bold type characters are extension function registers.

Port 4 (D8H)

BIT	NAME	FUNCTION
7	WW-W.L	Reserve
6	WWW.	Reserve
5	WWW	Reserve
4	W	Reserve
3	P43	Port 4 Data bit which outputs to pin P4.3.
2	P42	Port 4 Data bit. which outputs to pin P4.2.
1	P41	Port 4 Data bit. which outputs to pin P4.1.
0	P40	Port 4 Data bit which outputs to pin P4.0.

In-System Programming (ISP) Mode

The W78E516B equips one 64K byte of main FLASH-ROM bank for application program (called APROM) and one 4K byte of auxiliary FLASH-ROM bank for loader program (called LDROM). In the normal operation, the microcontroller executes the code in the APROM. If the content of APROM needs to be modified, the W78E516B allows user to activate the In-System Programming (ISP) mode by setting the CHPCON register. The CHPCON is read-only by default, software must write two specific values 87H, then 59H sequentially to the CHPENR register to enable the CHPCON write attribute. Writing CHPENR register with the values except 87H and 59H will close CHPCON register write attribute. The W78E516B achieves all h-system programming operations including enter/exit ISP Mode, program, erase, read ... etc, during device in the idle mode. Setting the bit CHPCON.0 the device will enter in-system programming mode after a wake-up from idle mode. Because device needs proper time to complete the ISP operations before awaken from idle mode, software may use timer interrupt to control the duration for device wake-up from idle mode. To perform ISP operation for revising contents of APROM, software located at APROM setting the CHPCON register then enter idle mode, after awaken from idle mode the device executes the corresponding interrupt service routine in LDROM. Because the device will clear the program counter while switching from APROM to LDROM, the first execution of RETI instruction in interrupt service routine will jump to 00H at LDROM area. The device offers a software reset for switching back to APROM while the content of APROM has been updated completely. Setting CHPCON register bit 0, 1 and 7 to logic-1 will result a software reset to reset the CPU. The software reset serves as a external reset. This in-system programming feature makes the job easy and efficient in which the application needs to update firmware frequently. In some applications, the in-system programming feature make it possible to easily update the system firmware without opening the chassis.

W78E516B

SFRAH, SFRAL: The objective address of on-chip FLASH-ROM in the in-system programming mode. SFRFAH contains the high-order byte of address, SFRFAL contains the low-order byte of address.

SFRFD: The programming data for on-chip FLASH-ROM in programming mode.

SFRCN: The control byte of on-chip FLASH-ROM programming mode.

SFRCN (C7)

BIT	NAME	FUNCTION
7	-10 ¹	Reserve.
6	WFWIN	On-chip FLASH-ROM bank select for in-system programming. = 0: 64K bytes FLASH-ROM bank is selected as destination for re- programming. = 1: 4K bytes FLASH-ROM bank is selected as destination for re-programming.
5	OEN	FLASH-ROM output enable.
4	CEN	FLASH-ROM chip enable.
3, 2, 1, 0	CTRL[3:0]	The flash control signals

MODE	WFWIN	CTRL<3:0>	OEN	CEN	SFRAH, SFRAL	SFRFD
Erase 64KB APROM 🚿	0,00	0010	1	0	X	Х
Program 64KB APROM 🔨	0	0001	1	0	Address in	Data in
Read 64KB APROM	0	0000	0	0	Address in	Data out
Erase 4KB LDROM	WV1N.L	0010	1	0	X	X
Program 4KB LDROM	111	0001	1	0	Address in	Data in
Read 4KB LDROM	1	0000	0	0	Address in	Data out

In-System Programming Control Register (CHPCON)

CHPCON (BFH)

In-Syste	n-System Programming Control Register (CHPCON)					
CHPCON	CHPCON (BFH)					
BIT	NAME	FUNCTION				
7	SWRESET (F04KMODE)	When this bit is set to 1, and both FBOOTSL and FPROGEN are set to 1. It will enforce microcontroller reset to initial condition just like power on reset. This action will re-boot the microcontroller and start to normal operation. To read this bit in logic-1 can determine that the F04KBOOT mode is running.				
6	-	Reserve.				
5	-	Reserve.				
4	ENAUXRAM	1: Enable on-chip AUX-RAM. 0: Disable the on-chip AUX-RAM				

WW.100Y.COM.TW WW.100X.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

00Y.COM.TW

W78E516B

OM.TW

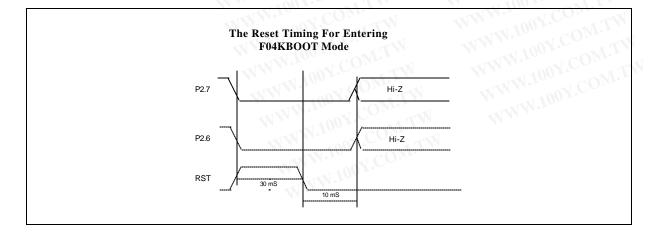
WWW.100Y.COM.TW linbond

-11	0	Must set to 0.
2	0	Must set to 0.
W	FBOOTSL	The Program Location Select.
	W.100Y.C	0: The Loader Program locates at the 64 KB APROM. 4KB LDROM is destination for re-programming.
N	WW.100X	1: The Loader Program locates at the 4 KB memory bank. 64KB APROM is destination for re-programming.

Publication Release Date: February 2000 **Revision A3**

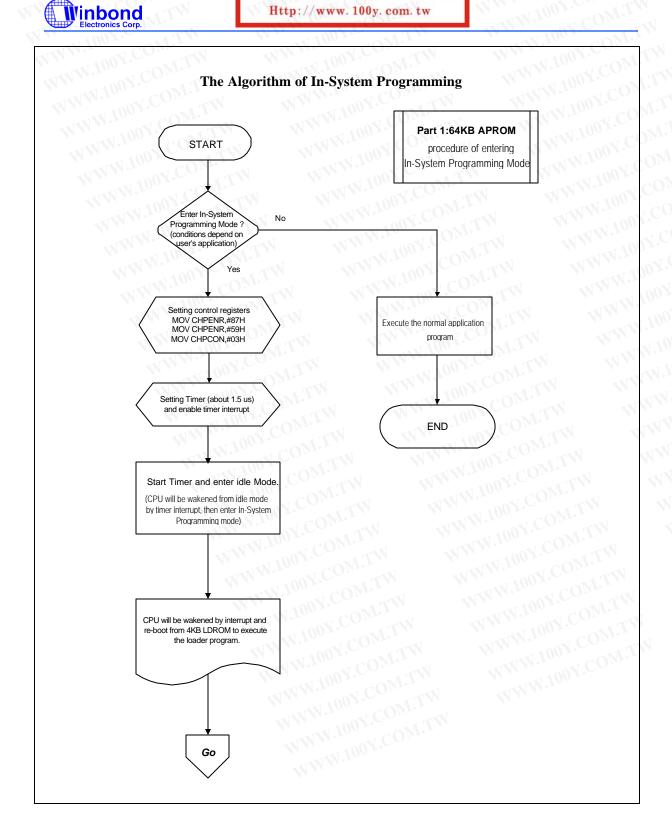
W78E516B

CHPCON (BFH), continued

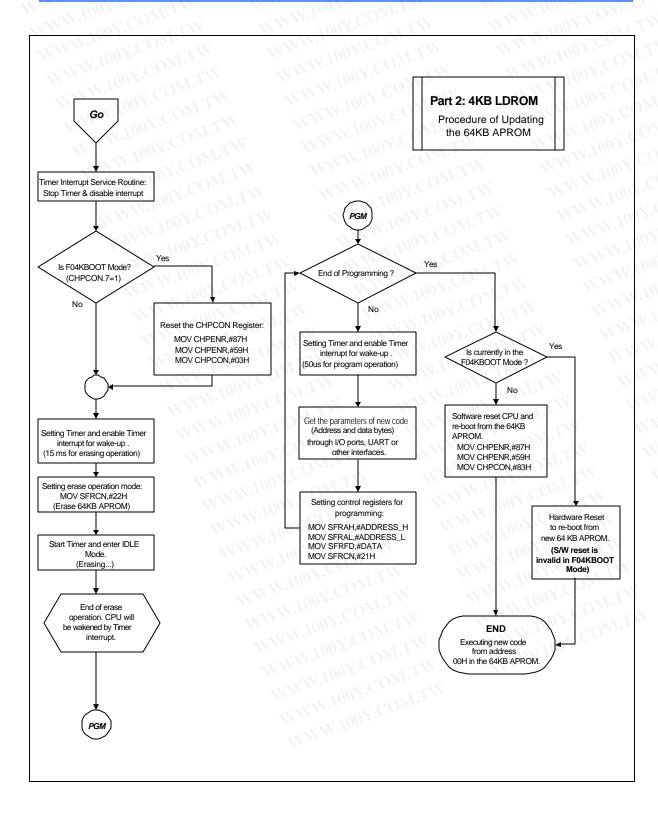

BIT	NAME	FUNCTION
0	FPROGEN	FLASH-ROM Programming Enable.
	W.100X.C	= 1: enable. The microcontroller enter the in-system programming mode after entering the idle mode and wake-up from interrupt. During in-system programming mode, the operation of erase, program and read are achieve when device enters idle mode.
	NWW.100	 = 0: disable. The on-chip flash memory is read-only. In-system programmability is disabled.

F04KBOOT Mode (Boot From LDROM)

By default, the W78E516B boots from APROM program after a power on reset. On some occasions, user can force the W78E516B to boot from the LDROM program via following settings. The possible situation that you need to enter F04KBOOT mode when the APROM program can not run properly and device can not jump back to LDROM to execute in-system programming function. Then you can use this F04KBOOT mode to force the W78E516B jumps to LDROM and executes in-system programming procedure. When you design your system, you may reserve the pins P2.6, P2.7 to switches or jumpers. For example in a CD-ROM system, you can connect the P2.6 and P2.7 to PLAY and EJECT buttons on the panel. When the APROM program fails to execute the normal application program. User can press both two buttons at the same time and then turn on the power of the personal computer to force the W78E516B to enter the F04KBOOT mode. After power on of personal computer, you can release both buttons and finish the in-system programming procedure to update the APROM code. In application system design, user must take care of the P2, P3, ALE, EA and PSEN pin value at reset to prevent from accidentally activating the programming mode or F04KBOOT mode.


F04KBOOT MODE

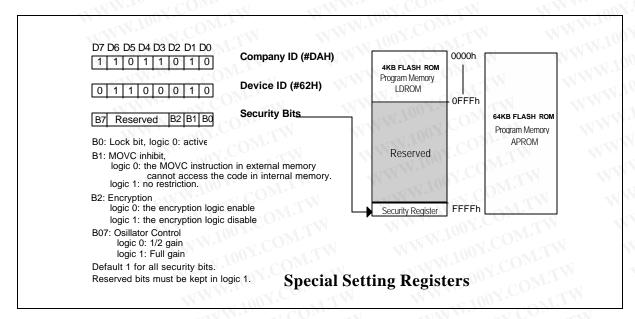
P4.3	P2.7	P2.6	MODE
Х	L	L	FO4KBOOT
L	Х	Х	FO4KBOOT


WWW.100Y.COM.T

W78E516B

W78E516B

Electronics Corp.


W78E516B

Electronics Corp.

SECURITY

During the on-chip FLASH-ROM programming mode, the FLASH-ROM can be programmed and verified repeatedly. Until the code inside the FLASH-ROM is confirmed OK, the code can be protected. The protection of FLASH-ROM and those operations on it are described below.

The W78E516B has several Special Setting Registers, including the Security Register and Company/Device ID Registers, which can not be accessed in programming mode. Those bits of the Security Registers can not be changed once they have been programmed from high to low. They can only be reset through erase-all operation. The contents of the Company ID and Device ID registers have been set in factory. The Security Register is located at the 0FFFFH of the LDROM space.

Lock bit

This bit is used to protect the customer's program code in the W78E516B. It may be set after the programmer finishes the programming and verifies sequence. Once this bit is set to logic 0, both the FLASH ROM data and Special Setting Registers can not be accessed again.

MOVC Inhibit

This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC instruction in external program memory from reading the internal program code. When this bit is set to logic 0, a MOVC instruction in external program memory space will be able to access code only in the external memory, not in the internal memory. A MOVC instruction in internal program memory space will always be able to access the ROM data in both internal and external memory. If this bit is logic 1, there are no restrictions on the MOVC instruction.

Encryption

This bit is used to enable/disable the encryption logic for code protection. Once encryption feature is enabled, the data presented on port 0 will be encoded via encryption logic. Only whole chip erase will

W78E516B

Electronics Corp.

Oscillator Control

W78E516B/E516 allow user to diminish the gain of on-chip oscillator amplifier by using programmer to set the bit B7 of security register. Once B7 is set to 0, a half of gain will be decreased. Care must be taken if user attempts to diminish the gain of oscillator amplifier, reducing a half of gain may improperly affect the external crystal operation at high frequency above 24 MHz. The value of R and C1, C2 may need some adjustment while running at lower gain.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
DC Power Supply	VDD-VSS	-0.3	+6.0	V
Input Voltage	VIN	Vss -0.3	VDD +0.3	V
Operating Temperature	TA	0.02.0	70	°C
Storage Temperature	TST	-55	+150	S₀ No

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

D.C. ELECTRICAL CHARACTERISTICS

(VDD-Vss = $5V \pm 10\%$, TA = 25° C, Fosc = 20 MHz, unless otherwise specified.)

PARAMETER	SYM.	SPE	ECIFICATIO	ON	TEST CONDITIONS
WWW.100		MIN.	MAX.	UNIT	COM.TW Y
Operating Voltage	VDD	4.5	5.5	VO	RST = 1, P0 = VDD
Operating Current	IDD	N.T-N	20	mA	No load VDD = 5.5V
Idle Current	lidle	OM.TV	6	mA	Idle mode VDD = 5.5V
Power Down Current	IPWDN	COP1.1	50	μA	Power-down mode VDD = 5.5V
Input Current P1, P2, P3, P4	lin1	-50	+10	μA	VDD = 5.5V VIN = 0V or VDD
Input Current RST	lin2	-10	+300	μA	VDD = 5.5V 0< VIN <vdd< td=""></vdd<>
Input Leakage Current P0, EA	ILK	-10	+10	μA	VDD = 5.5V 0V< VIN < VDD
Logic 1 to 0 Transition Current P1, P2, P3, P4	ITL ^[*4]	-500	COW.I.	μA	VDD = 5.5V VIN = 2.0V
Input Low Voltage P0, P1, P2, P3, P4, EA	VIL1	0	0.8	V	VDD = 4.5V

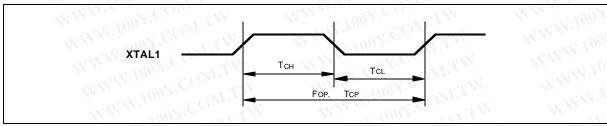
W78E516B

WWW.100 Electronics Corp.

PARAMETER	SYM.	SF	PECIFICATIO	N	TEST CONDITIONS
	WW	MIN.	MAX.	UNIT	WWW.100Y.CO
Input Low Voltage RST	VIL2	0	0.8	V	VDD = 4.5V
Input Low Voltage XTAL1 ^[*4]	VIL3	0	0.8	V	VDD = 4.5V
Input High Voltage P0, P1, P2, P3, P4, EA	VIH1	2.4	VDD +0.2	V	VDD = 5.5V
Input High Voltage RST	VIH2	3.5	VDD +0.2	V	VDD = 5.5V
Input High Voltage XTAL1 ^[*4]	V⊪3	3.5	VDD +0.2		VDD = 5.5V
Output Low Voltage P1, P2, P3, P4	VOL1	- ~	0.45	Vol.	VDD = 4.5V IOL = +2 mA
Output Low Voltage P0, ALE, PSEN ^[*3]	VOL2	-	0.45	ov oov.c	VDD = 4.5V IOL = +4 mA
Sink Current P1, P3, P4	lsk1	4	12	mA	VDD = 4.5V VIN = 0.45V
Sink Current P0, P2, ALE, PSEN	lsk2	10	20	mA	VDD = 4.5V VIN = 0.45V
Output High Voltage P1, P2, P3, P4	VOH1	2.4	- 11	V	VDD = 4.5V IOH= -100 μA
Output High Voltage P0, ALE, PSEN ^[*3]	VOH2	2.4	N -	V	VDD = 4.5V IOH= -400 μA
Source Current P1, P2, P3, P4	lsr1	-120	-250	μA	VDD = 4.5V VIN = 2.4V
Source Current P0, P2, ALE, PSEN	lsr2	-8	-20	mA	VDD = 4.5V VIN = 2.4V

*3. P0, ALE and PSEN are tested in the external access mode.

*4. XTAL1 is a CMOS input.


*5. Pins of P1, P2, P3, P4 can source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when VIN approximates to 2V.

inbond

AC CHARACTERISTICS

The AC specifications are a function of the particular process used to manufacture the part, the ratings of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the specifications can be expressed in terms of multiple input clock periods (TCP), and actual parts will usually experience less than a ±20 nS variation. The numbers below represent the performance expected from a 0.6 micron CMOS process when using 2 and 4 mA output buffers.

Clock Input Waveform

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTES
Operating Speed	Fop	0	WW.IO	40	MHz	1,111
Clock Period	TCP	25	WWW.L	O.CO	nS	2
Clock High	Tch	10	WW.W.	D.V.	nS	3
Clock Low	TclcOM	10	VIV	Joo A.	nS	3

Notes:

1. The clock may be stopped indefinitely in either state.

2. The TCP specification is used as a reference in other specifications.

3. There are no duty cycle requirements on the XTAL1 input.

Program Fetch Cycle

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTES
Address Valid to ALE Low	TAAS	1 TCP-∆	-	MAN.	nS	4
Address Hold from ALE Low	Таан	1 TCP-∆	N -	W-WW	nS	1, 4
ALE Low to PSEN Low	TAPL	1 TCP-∆	- 12-	WW	nS	4
PSEN Low to Data Valid	TPDA	N.COM.	WT	2 TCP	nS	2
Data Hold after PSEN High	TPDH	00	W.	1 TCP	nS	3
Data Float after PSEN High	TPDZ	0_0	NT.	1 TCP	nS	
ALE Pulse Width	TALW	2 TCP-∆	2 TCP	-	nS	4
PSEN Pulse Width	TPSW	3 TCP-∆	3 TCP	-	nS	4

Notes:

1. P0.0-P0.7, P2.0-P2.7 remain stable throughout entire memory cycle.

2. Memory access time is 3 TCP.

3. Data have been latched internally prior to PSEN going high.

WWW.100Y.COM.TW

Data Read Cycle

PARAMETER	W.	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTES
ALE Low to RD Low	N.	TDAR	3 TCP- Δ	<u></u>	3 TCP+ Δ	nS	1, 2
RD Low to Data Valid	NT.	TDDA	TOOY	COm	4 TCP	nS	1011.
Data Hold from RD High	T	TDDH 📢	0 00	I.Com	2 TCP	nS	N.100Y
Data Float from RD High	111	TDDZ	0	N.CO.	2 TCP	nS	N.100
RD Pulse Width	1	TDRD	6 TCP- Δ	6 TCP	NEW	nS	2

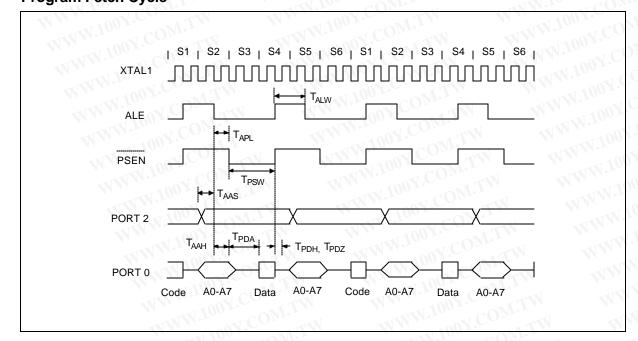
Data Write Cycle

PARAMETER	SYMBOL	MIN. 🔨	TYP.	MAX.	UNIT
ALE Low to WR Low	TDAW	3 TCP-4	MM-W-	3 TCP+ Δ	nS
Data Valid to WR Low	TDAD	∏1 TCP-∆	MIN.	100¥.CO	nS
Data Hold from WR High	TDWD	<1 TCP-∆	W-WW	100 Y.C.	nS
WR Pulse Width	TDWR	6 TCP-Δ	6 TCP	100Y.C	nS

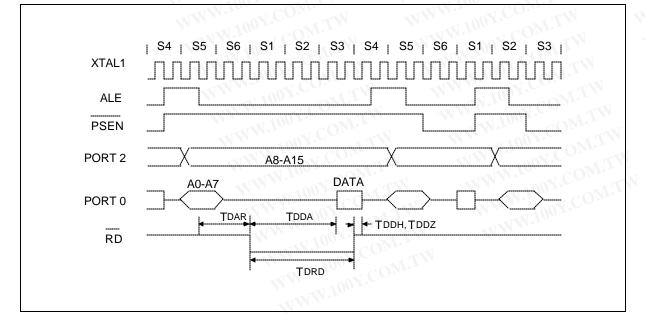
Port Access Cycle

		WT.IN			
Port Access Cycle	W.100Y.CU	WT.MO	1	W 100	Y.CON
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Port Input Setup to ALE Low	TPDS	1 TCP	-	W	nS
Port Input Hold from ALE Low	TPDH	0	-	W II	nS
Port Output to ALE	TPDA	1 TCP	- III	N.	nS

Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to WWW.100 WWW.100Y.COM. ALE, since it provides a convenient reference.


W78E516B

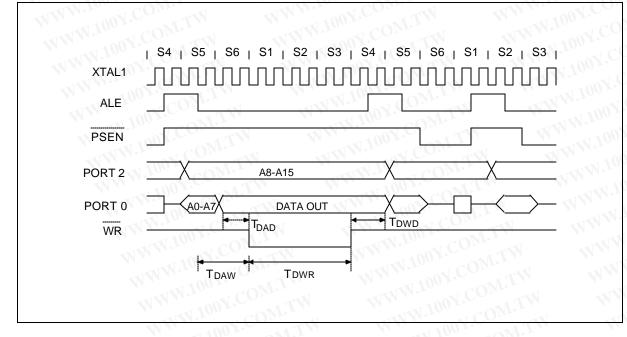
TIMING WAVEFORMS


Winbond

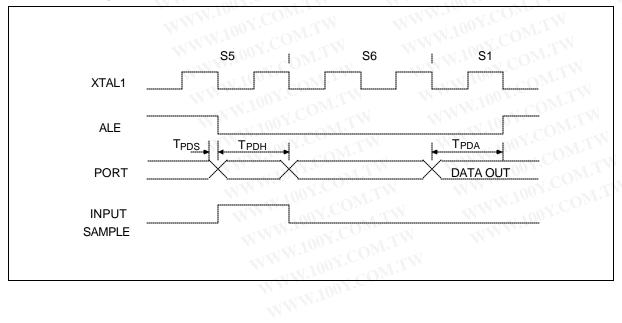
WWW.100Y

Program Fetch Cycle

Data Read Cycle



W78E516B



Timing Waveforms, continued

Data Write Cycle

Port Access Cycle

W78E516B

Electronics Corp.

TYPICAL APPLICATION CIRCUIT

Expanded External Program Memory and Crystal

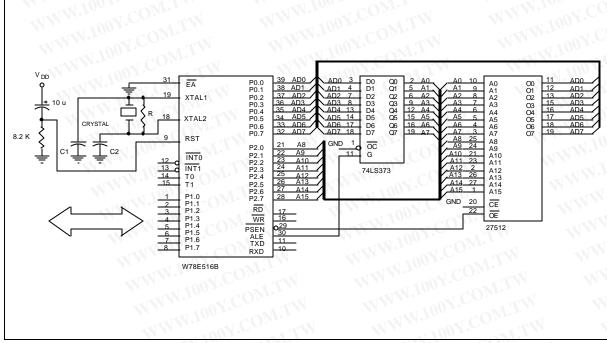


Figure A

CRYSTAL	C C1	C2	R
6 MHz	47P	47P 📢	91.17
16 MHz	30P	30P 🔬	111.1
24 MHz	15P	10P	M.W.
32 MHz	10P	10P	6.8K
40 MHz	5P	5P	4.7K

Above table shows the reference values for crystal applications.

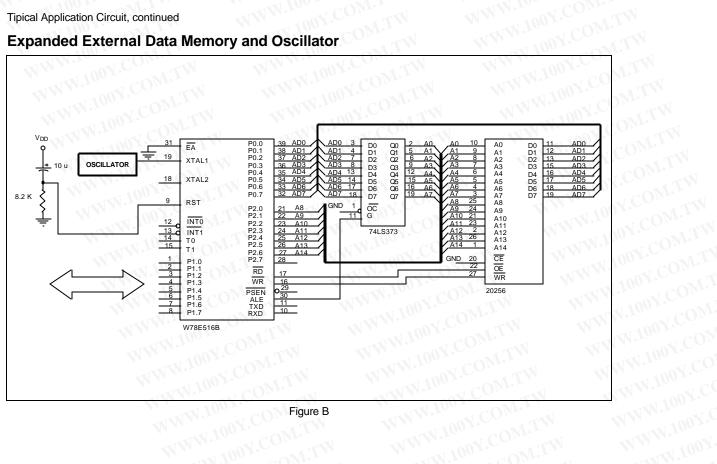
Notes:

1. C1, C2, R components refer to Figure A

2. Crystal layout must get close to XTAL1 and XTAL2 pins on user's application board.

100X.COM.TW

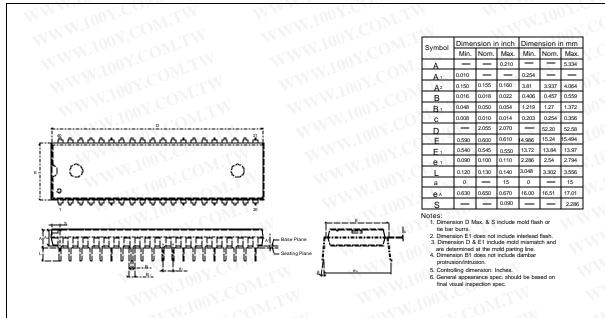
WWW.100Y.COM


W78E516B

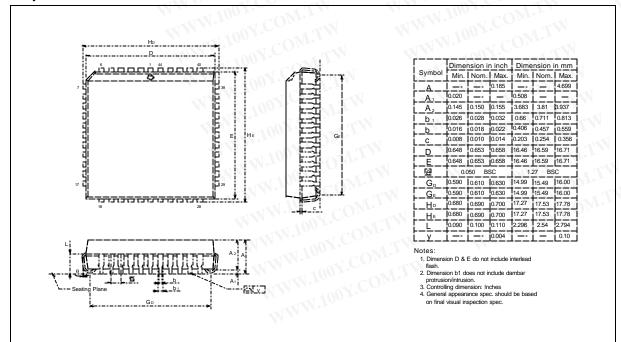
100Y.COM.T

Tipical Application Circuit, continued

Expanded External Data Memory and Oscillator



WWW.100Y.COM.T



PACKAGE DIMENSIONS

40-pin DIP

44-pin PLCC

W78E516B

Electronics Corp.

W78E516B

Application Note: In-system Programming Software Examples

This application note illustrates the in-system programmability of the Winbond W78E516B FLASH-ROM microcontroller. In this example, microcontroller will boot from 64 KB APROM bank and waiting for a key to enter in-system programming mode for re-programming the contents of 64 KB APROM. While entering in-system programming mode, microcontroller executes the loader program in 4KB LDROM bank. The loader program erases the 64 KB APROM then reads the new code data from external SRAM buffer (or through other interfaces) to update the 64KB APROM.

EXAMPLE 1:

******* Example of 64K APROM program: Program will scan the P1.0. if P1.0 = 0, enters in-system programming mode for updating the content of APROM code else executes the current ROM code. XTAL = 40 MHzWWW.100Y.COM.T .chip 8052 .RAMCHK OFF .symbols CHPCON EQU BFH F6H CHPENR EQU SFRAL EQU C4H SFRAH EQU C5H SFRFD EQU C6H SFRCN EQU C7H ORG 0H LJMP 100H ; JUMP TO MAIN PROGRAM TIMER0 SERVICE VECTOR ORG = 000BH ****** ORG 00BH CLR TR0 ; TR0 = 0, STOP TIMER0 MOV TL0,R6 MOV TH0.R7 RETI 64K APROM MAIN PROGRAM ******** ORG100H MAIN 64K: ; SCAN P1.0 MOV A,P1 ANL A,#01H CJNE A,#01H,PROGRAM_64K ; IF P1.0 = 0, ENTER IN-SYSTEM PROGRAMMING MODE JMP NORMAL_MODE PROGRAM_64K: ; CHPENR = 87H, CHPCON REGISTER WRTE ENABLE MOV CHPENR,#87H ; CHPENR = 59H, CHPCON REGISTER WRITE ENABLE MOV CHPENR,#59H MOV CHPCON,#03H ; CHPCON = 03H, ENTER IN-SYSTEM PROGRAMMING MODE

MOV TCON,#00H MOV IP,#00H MOV IE,#82H WWW.100Y.COM.TW

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

W78E516B

MO.

; TR = 0 TIMER0 STOP

; IP = 00H

WWW.100Y.COM.TW ; TIMER0 INTERRUPT ENABLE FOR WAKE-UP FROM IDLE MODE WWW.100Y.COM.TW ; TL0 = FEH WWW.100Y WWW.100Y.COM.

> Publication Release Date: February 2000 **Revision A3**

W78E516B

Linbond Electronics Corp.

MOV R7,#FFH MOV TL0,R6 MOV TH0,R7 MOV TMOD,#01H MOV TCON,#10H MOV PCON,#01H

; TH0 = FFH

; TMOD = 01H, SET TIMER0 A 16-BIT TIMER ; TCON = 10H, TR0 = 1,GO ; ENTER IDLE MODE FOR LAUNCHING THE IN-SYSTEM ; PROGRAMMABILITY

;* Normal mode 64KB APROM program: depending user's application

NORMAL_MODE:

; User's application program

EXAMPLE 2:

.***** ***** ;* Example of 4KB LDROM program: This lorder program will erase the 64KB APROM first, then reads the new ;* code from external SRAM and program them into 64KB APROM bank. XTAL = 40 MHz ***** ****** . ***** .chip 8052 .RAMCHK OFF .symbols BFH CHPCON EQU CHPENR EQU F6H SFRAL EQU C4H EQU SFRAH C5H SFRFD EQU C6H SFRCN EQU C7H ORG 000H LJMP 100H ; JUMP TO MAIN PROGRAM ******* 1. TIMER0 SERVICE VECTOR ORG = 0BH ******* ORG 000BH ; TR0 = 0, STOP TIMER0 CLR TR0 MOV TL0,R6 MOV TH0, R7 RETI 4KB LDROM MAIN PROGRAM ****** **ORG 100H**

100X.COM.TW

W78E516B

Electronics Corp.	N. COM	
MAIN_4K:	WWW.100X.COM.I.W	WWW.100X.COM.
MOV CHPENR,#87H	; CHPENR = 87H, CHPCON WRITE ENABLE. ; CHPENR = 59H, CHPCON WRITE ENABLE.	
ANL A,#80H		
	E_64K ; CHECK F04KBOOT MODE ?	
MOV CHPCON,#03H	; CHPCON = 03H, ENABLE IN-SYSTEM PROGRAM	IMING.
MOV CHPENR,#00H	; DISABLE CHPCON WRITE ATTRIBUTE	
MOV TCON,#00H	; TCON = 00H, TR = 0 TIMER0 STOP	
MOV TMOD,#01H MOV IP,#00H	; TMOD = 01H, SET TIMER0 A 16BIT TIMER ; IP = 00H	
MOV IE,#82H	; IE = 82H, TIMER0 INTERRUPT ENABLED	
MOV R6,#FEH MOV R7,#FFH		
MOV TL0,R6		
MOV TH0,R7 MOV TCON,#10H	; TCON = 10H, TR0 = 1, GO	
MOV PCON,#10H	; ENTER IDLE MODE	
UPDATE_64K:		
MOV CHPENR,#00H	; DISABLE CHPCON WRITE-ATTRIBUTE	
MOV TCON,#00H	; TCON = 00H , TR = 0 TIM0 STOP	
MOV IP,#00H MOV IE,#82H	; IP = 00H ; IE = 82H, TIMER0 INTERRUPT ENABLED	
MOV TMOD,#01H	; TMOD = 01H, MODE1	
MOV R6,#3CH	; SET WAKE-UP TIME FOR ERASE OPERATION, A ; ON USER'S SYSTEM CLOCK RATE.	BOUT 15 mS. DEPENDING
MOV R7,#B0H	NWW.1001 COM.1	
MOV TL0,R6		
MOV TH0,R7		
ERASE_P_4K:		
MOV SFRCN,#22H MOV TCON,#10H	; SFRCN(C7H) = 22H ERASE 64K ; TCON = 10H, TR0 = 1,GO	
MOV PCON,#1011 MOV PCON,#01H	; ENTER IDLE MODE (FOR ERASE OPERATION)	
.*****	***************************************	
;* BLANK CHECK		
;*************************************	; READ 64KB APROM MODE	
MOV SFRAH,#0H MOV SFRAL,#0H	; START ADDRESS = 0H	
MOV R6,#FBH MOV R7,#FFH	; SET TIMER FOR READ OPERATION, ABOUT 1.5 µ	ıS.
MOV TL0,R6 MOV TH0,R7	WWW.100Y.COLDA	
BLANK_CHECK_LOOP:		
SETB TR0	; ENABLE TIMER 0	

WWW.100Y.COM.TW inbond

MOV PCON,#01H ; ENTER IDLE MODE MOV A, SFRFD ; READ ONE BYTE WWW.100Y.COM.TW CJNE A, #FFH, BLANK_CHECK_ERROR ; NEXT ADDRESS INC SFRAL MOV A, SFRAL JNZ BLANK_CHECK_LOOP **INC SFRAH** MOV A, SFRAH WWW.100Y.COM.TW CJNE A,#0H,BLANK_CHECK_LOOP ; END ADDRESS = FFFFH JMP PROGRAM_64KROM

BLANK_CHECK_ERROR:

MOV P1,#F0H MOV P3,#F0H JMP \$

W.100X.COM.TW _ . . . Jornan WIVING 64KB APROM BANK CORAM_64KROM:

RE-PROGRAMMING 64KB APROM BANK

PROGRAM_64KROM:

-PROGRAMMING 64	KB APROM BANK	****0 ^{Y.COM}
GRAM_64KROM:		
MOV DPTR,#0H	; THE ADDRESS OF NEW ROM CODE	
MOV R2,#00H	; TARGET LOW BYTE ADDRESS	
MOV R1,#00H 🔬	; TARGET HIGH BYTE ADDRESS	
MOV DPTR,#0H	; EXTERNAL SRAM BUFFER ADDRESS	
MOV SFRAH,R1	; SFRAH, TARGET HIGH ADDRESS	
MOV SFRCN,#21H	; SFRCN(C7H) = 21 (PROGRAM 64K)	
MOV R6,#5AH	; SET TIMER FOR PROGRAMMING, ABOUT	50 μS.
MOV R7,#FFH		1001. ONIT
MOV TL0,R6		
MOV TH0,R7		
G_D_64K:		
MOV SERAL R2	· SERAL (CAH) - LOW BYTE ADDRESS	

PROG_D_64K:

MOV TH0,R7	
G_D_64K:	
MOV SFRAL,R2 MOVX A,@DPTR MOV SFRFD,A MOV TCON,#10H MOV PCON,#01H INC DPTR INC R2	; SFRAL(C4H) = LOW BYTE ADDRESS ; READ DATA FROM EXTERNAL SRAM BUFFER ; SFRFD(C6H) = DATA IN ; TCON = 10H, TR0 = 1,GO ; ENTER IDLE MODE (PRORGAMMING)
CJNE R2,#0H,PROG_ INC R1	_D_64K
MOV SFRAH,R1	
CJNE R1,#0H,PROG	D 64K

VERIFY 64KB APROM BANK

MOV R4,#03H ; ERROR COUNTER MOV R6,#FBH ; SET TIMER FOR READ VERIFY, ABOUT 1.5 μ S. MOV R7,#FFH

> Publication Release Date: February 2000 **Revision A3**

NWW.100Y.COM.TW

W78E516B

WWW.100Y.COM.

WWW.IO

WWW.100Y.COM.TW linbond

MOV TL0,R6 MOV TH0, R7 MOV DPTR,#0H MOV R2,#0H MOV R1,#0H MOV SFRAH, R1 MOV SFRCN,#00H

; The start address of sample code ; Target low byte address ; Target high byte address ; SFRAH, Target high address WWW.100Y.COM.TW ; SFRCN = 00 (Read ROM CODE)

W78E516B

WWW.100Y.COM

WWW.

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW inbond

W78E516B

WWW.100Y.COM

WWW.100Y.COM.T

WWW.

READ_VERIFY_64K:

; SFRAL(C4H) = LOW ADDRESS MOV SFRAL, R2 MOV TCON.#10H ; TCON = 10H, TR0 = 1,GO MOV PCON.#01H INC R2 MOVX A,@DPTR INC DPTR CJNE A, SFRFD, ERROR_64K CJNE R2,#0H,READ_VERIFY_64K INC R1 MOV SFRAH.R1 CJNE R1,#0H,READ_VERIFY_64K

00Y.COM.TW ;* PROGRAMMING COMPLETLY, SOFTWARE RESET CPU

*****	*******	
MOV CHPENR,#87H	; CHPENR = 87H	
MOV CHPENR,#59H	; CHPENR = 59H	
MOV CHPCON,#83H	; CHPCON = 83H, SOFTWARE RESET.	

ERROR_64K:

DJNZ R4, UPDATE_64K ; IF ERROR OCCURS, REPEAT 3 TIMES. ; IN-SYSTEM PROGRAMMING FAIL, USER'S PROCESS TO DEAL WITH IT.