WIMA FKS 3

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Polyester (PET) Film and Foil Capacitors for Pulse Applications PCM 7.5 mm to 15 mm

Special Features

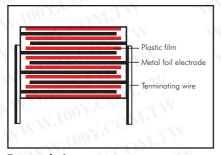
- Pulse duty construction
- According to RoHS 2002/95/EC

Typical Applications

For general DC-applications e.g.

- Coupling
- Decoupling

Construction


Dielectric:

Polyethylene-terephthalate (PET) film

Capacitor electrodes:

Metal foil

Internal construction:

Encapsulation:

Solvent-resistant, flame-retardent plastic case with epoxy resin seal, UL 94 V-0

Terminations:

Tinned wire.

Marking:

Colour: Red. Marking: Black. Epoxy resin seal: Yellow.

Electrical Data

Capacitance range:

1000 pF to 0.22 μ F (E12-values on request) **Rated voltages:**

100 VDC, 250 VDC, 400 VDC, 630 VDC

Capacitance tolerances:

± 20%, ±10%, ±5%,

Operating temperature range:

-55° C to +100° C

Test specifications:

In accordance with IEC 60384-11 and EN 130 100

Climatic test category:

55/100/56 in accordance with IEC

Insulation resistance at +20° C:

 $\geq 3 \times 10^4 M\Omega$

(mean value: $5 \times 10^5 \, M\Omega$) Measuring voltage: 100 V/1 min.

Test voltage: 2 U_r, 2 sec.

Maximum pulse rise time:

1000 V/ μ sec for pulses equal to the rated voltage

Dissipation factors at $+20^{\circ}$ C: tan δ

0	at f	C≤0.01 µ F	0.01 μF <c≤0.22 th="" μf<=""></c≤0.22>
0	10 kHz	$\leq 8 \times 10^{-3}$ $\leq 15 \times 10^{-3}$ $\leq 20 \times 10^{-3}$	$\leq 20 \times 10^{-3}$

Voltage derating:

A voltage derating factor of 1.25 % per K must be applied from +85° C for DC voltages and from +75° C for AC voltages.

Reliability:

Operational life $> 300\,000$ hours Failure rate < 5 fit (0.5 x $\rm U_r$ and 40° C)

Mechanical Tests

Pull test on leads:

 $10\ N$ in direction of leads according to IEC 60068-2-21

Vibration:

6 hours at 10...2000 Hz and 0.75 mm displacement amplitude or 10 g in accordance with IEC 60068-2-6

Low air density:

1kPa = 10 mbar in accordance with IEC 60068-2-13

Bump test:

4000 bumps at 390 m/sec² in accordance with IEC 60068-2-29

Packing

Available taped and reeled.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

WIMA FKS 3

Continuation

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

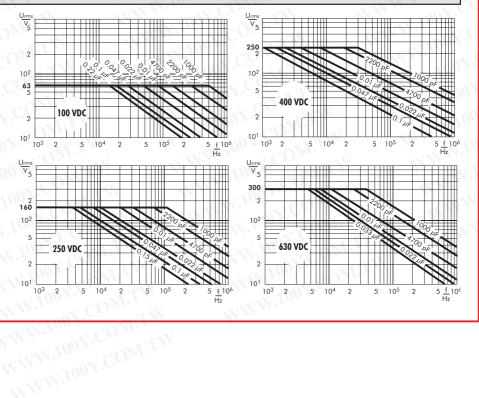
General Data

		001/00	440 14	Ostr.		01/00	/1 /O \ ''	Oth I		01/00	(0.50.) "	O#		00 1 /0 0	(000)	O.t.
Capacitance	100 VDC/63 VAC*			250 VDC/160 VAC*			400 VDC/250 VAC*			630 VDC/300 VAC*						
Capacilarico	W	H	L	PCM**	W	Н	L	PCM**	W	H	0.76	PCM**	W	Н	L	PCM**
1000 pF	3	8.5	10	7.5	3	8.5	10	7.5	3	9	13	10	3	9	13	10
1500 "	3	8.5	10	7.5	3	8.5	10	7.5	3	9	13	10	3	9	13	10
2200 "	3	8.5	10	7.5	3	8.5	10	7.5	3	9	13	10	3	9	13	10
3300 "	3	8.5	10	7.5	3	8.5	10	7.5	3	9	13	10	4	9.5	13	10
4700 "	3	8.5	10	7.5	3	8.5	10	7.5*	3	9	13	10	4	9.5	13	10
				M.r.	3	9	13	10*		UWN	N	V.C		W		
6800 "	3	8.5	10	7.5	3	8.5	10	7.5*	3	9	13	10	5	- 11	13	10
A CONP	-TA		TXI Y	NA.	3	9	13	10*		WW	N Y	ON!		W		
0.01 µF	3	8.5	10	7.5*	3	9	13	10	4	9.5	13	10	6	12	13	10
W.Co.	3	9	13	10*	- 100		- 7 / 1			1/1/	-31	1001		M.T	14	
0.015 "	3	8.5	10	7.5*	4	9.5	13	10	5	-11	13	10	6	12.5	18	15
100 χ	3	9	13	10*	-x1 10		LOW.	TAN		1	-1	0.100		OM.		
0.022 "	3	8.5	10	7.5*	5	11-7	13	10	6	12 <	13	10	7	14	18	15
1001.	3	9	13	10*	.TVV .			Vr.				N_{IO}		$^{\prime}O_{N}$		
0.033 "	4	9.5	13	10	6	12	13	10	6	12.5	18	15	8	15	18	15
0.047 "	4	9.5	13	10	6	12.5	18	15	7	14	18	15		CO_{Z}	120	N
0.068 "	5	11	13	10	7	14	18	15	8	15	18	15	1003		V_{i}	4
0.1 µF	6	12	13	10	8	15	18	15	9	16	18	15	. 00	V.CC	- 1	
0.15 "	7	14	18	15	9	16	18	15				-31		- 01	DM	
0.22 "	8	15	18	15	WW		on V.			N	1	A.A.		WY.C	- 1	WT

- * AC voltage: f = 50 Hz; $1.4 \times U_{rms} + \text{UDC} \leq U_{r}$
- ** PCM = Printed circuit module = lead spacing
- * On ordering please state the required <u>PCM</u> (lead spacing)! If not specified, smaller PCM will be booked.

Dims. in mm.

Taped version see page 104.


 $\begin{array}{l} d=0.5 \ \text{\emptyset if W}=3 \\ d=0.6 \ \text{\emptyset if W} \geqslant 4 \end{array} \right\} \ \text{PCM 7.5 and 10} \\ d=0.8 \ \text{\emptyset if PCM}=15 \end{array}$

6 -2

 (± 0.4)

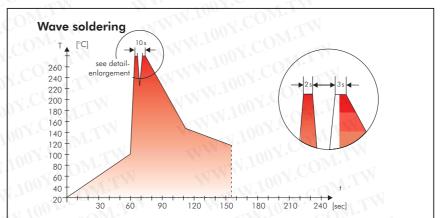
Rights reserved to amend design data without prior notification.

Permissible AC voltage in relation to frequency at 10° C internal temperature rise (general guide).

Recommendation for Processing and Application of Through-Hole Capacitors

Soldering Process

A preheating of through-hole WIMA capacitors is allowed for temperatures $T_{max} < 100 \,^{\circ}$ C.


In practice a preheating duration of t < 5 min. has been proven to be best.

Single wave soldering

Soldering bath temperature: $T < 260 \,^{\circ}$ C Immersion time: t < 5 sec

Double wave soldering

Soldering bath temperature: T < 260 ° C Immersion time: $2 \times t < 3 \text{ sec}$

Temperature/time graph for the maximum permissible solder bath temperature for the wave soldering of through-hole WIMA capacitors

WIMA Quality and Environmental Philosophy

ISO 9001:2000 Certification

ISO 9001:2000 is an international basic standard of quality assurance systems for all branches of industry. The approval according to ISO 9001:2000 of our factories by the VDE inspectorate certifies that organisation, equipment and monitoring of quality assurance in our factories correspond to internationally recognized standards.

WIMA WPCS

The WIMA Process Control System WPCSI is a quality surveillance and optimization system developed by WIMA. WPCS is a major part of the quality-oriented WIMA production. Points of application of WPCS during production process:

- incoming material inspection
- metallization
- film inspection
- schoopage
- pre-healing
- lead attachment
- cast resin preparation/ encapsulation
- 100% final inspection
- AQL check

WIMA Environmental Policy

All WIMA capacitors, irrespective of whether through-hole devices or SMD, are made of environmentally friendly materials. Neither during manufacture nor in the product itself any toxic substances are used, e.g.

- Lead
- PCB Arsenic
- CFC Cadmium

- PBB/PBDE

- Hydrocarbon chloride Mercury
- Chromium 6+ etc.

We merely use pure, recyclable materials for packing our components, such as:

- carton
- cardboard
- adhesive tape made of paper
- polystyrene

We almost completely refrain from using packing materials such as:

- foamed polystyrene (Styropor®)
- adhesive tapes made of plastic
- metal clips

RoHS Compliance

According to the RoHS Directive 2002/95/EC certain hazardous substances like e.g. lead, cadmium, mercury must not be used any longer in electronic equipment as of July 1st, 2006. For the sake of the environment WIMA has refraind from using such substances since years already.

Tape for lead-free WIMA capacitors

DIN EN ISO 14001:2005

WIMA's environmental management has been established in accordance with the guidelines of DIN EN ISO 14001:2005. The certification has been granted in June 2006.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Typical Dimensions for Taping Configuration

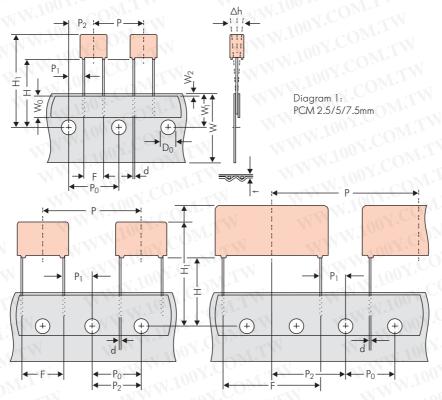


Diagram 2: PCM 10/15 mm

Diagram 3: PCM 22.5 and 27.5*mm

*PCM 27.5 taping possible with two feed holes between components

	Or.	Dimensions for Radial Taping									
Designation	Symbol	PCM 2.5 taping	PCM 5 taping	PCM 7.5 taping	PCM 10 taping*	PCM 15 taping*	PCM 22.5 taping	PCM 27.5 taping			
Carrier tape width		18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5			
Hold-down tape width	W ₀	6.0 for hot-sealing adhesive tape	6.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape			
Hole position	W	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5			
Hold-down tape position	W ₂	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.			
Feed hole diameter	Do	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2			
Pitch of component	Р	12.7 ±1.0	12.7 ±1.0	12.7 ±1.0	25.4 ±1.0	25.4 ±1.0	38.1 ±1.5	38.1 ±1.5 or 50.8 ±1.5			
Feed hole pitch	P ₀	cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch	cumulative pitch error max. 1.0 mm/20 pitch	cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch	cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch	cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pital error max. 1.0 mm/20 pital			
Feed hole centre to lead	P ₁	5.1 ±0.5	3.85 ±0.7	2.6 ±0.7	7.7 ±0.7	5.2 ±0.7	7.8 ±0.7	5.3 ±0.7			
Hole centre to component centre	P ₂	6.35 ±1.3	6.35 ±1.3	6.35 ±1.3	12.7 ±1.3	12.7 ±1.3	19.05 ±1.3	19.05 ±1.3			
Feed hole centre to bottom	H▲	16.5 ±0.3	16.5 ±0.3	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5			
edge of the component		18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5			
Feed hole centre to top edge of the component	H ₁	H+H _{component} < H ₁ 32.25 max.	H+H _{component} < H ₁ 32.25 max.	H+H _{component} < H ₁ 24.5 to 31.5	$_{ m oponent} < { m H_1} \qquad { m H+H}_{ m component} < { m H_1} \qquad { m H+H}_{ m component} < { m H_1} \qquad { m H-H}_{ m component} < { m H_1} \qquad { m H-H}_{ m component} < { m H_2} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H_3} \qquad { m H-H}_{ m component} < { m H_3} \qquad { m H_3$		H+H _{component} < H ₁ 30.0 to 43.0	H+H _{component} < H ₁ 35.0 to 45.0			
Lead spacing at upper edge of carrier tape	F	2.5 ±0.5	5.0 ^{+0.8} _{-0.2}	7.5 ±0.8	10.0 ±0.8	15 ±0.8	22.5 ±0.8	27.5 ±0.8			
Lead diameter	d	0.4 ±0.05	0.5 ±0.05	*0.5 ±0.05 or 0.6 +0.06	*0.5 ±0.05 or 0.6 +0,06	0.8 +0,08	0.8 +0,08	0.8 +0.08 -0.05			
Component alignment	Δh	± 2.0 max.	± 2.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.			
Total tape thickness	t	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2			
D 1		ROLL//	AMMO								
Package (see also page 105)	A	REEL \$\tilde{9}\$ 360 max.	$B \begin{array}{c} 52 \pm 2 \\ 58 \pm 2 \end{array} \right\}$ depending on comp. dimensions								
Unit			100 ×	OM	see details page 107.	Wilne	OM				

 $^{{\}color{black} \blacktriangle}$ Please give "H" dimensions and desired packaging type when ordering.

PCM 10 and PCM 15 can be crimped to PCM 7.5. Position of components according to PCM 7.5 (sketch 1). $P_0 = 12.7$ or 15.0 is possible

WWW.100Y.CO

WWW.100Y.COM.TW

Dims in mm.

Please clarify customer-specific deviations with the manufacturer.

Diameter of leads see General Data.