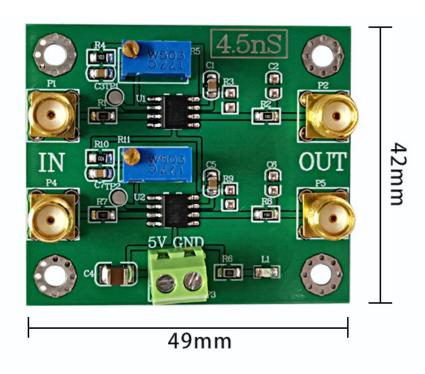

4# 14, 45 WL		
模块参数		
参数名称	参数值	备注
模块型号	TLV3501	双路
模块类型	高速比较器	
模块供电电压	DC-5V	
模块供电电流	100mA	
输入信号形式	单端	
输入电压范围	0 - 5V	都是0以上的单极性信号
输入频率范围	DC-120MHz	频率增加波形变化
输入阻抗	高阻	
输出电压范围	OV 或 5V	
输入输出信号特点		输入无耦合,输出方波
输出电流	50mA (MAX)	
比较方式	同相比较	同相端输入信号与板载可调电压比较
模块屏蔽	无	
模块重量		
模块保护	无	无反接保护,无限流保护
模块规格	49*42*12	长*宽*高-PCB尺寸
模块发热	无散热片	正常工作无需散热
模块发热因素		供电电压过大损坏芯片或者模块有损 坏
模块工作温度	-25°C+75°C	工业级
模块特点		输出电源LED指示
应用范围		频率测量,数据采集前端,波形整形 等
模块接口类型		SMA信号信号输入输出,3.81-2PIN电源卡线座

Q模块描述


TLV3501是一种高速比较器。它可用于对输入信号进行波形整形 并输出TTL电平信号。

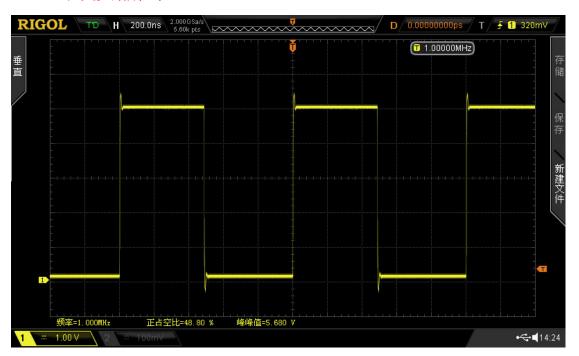
TLV3501具有快速的4.5ns传播延迟时间,单电源5V供电,具有 超出摆幅输入共模范围的特点使其非常适合低电压应用, 是高 速比较电路的理想选择。轨对轨输出可直接驱动CMOS或TTL逻 辑。本模块可对宽电压范围周期信号进行整形,作为频率、相 位差等时间域测量的前端调理模块。

Q 接口图

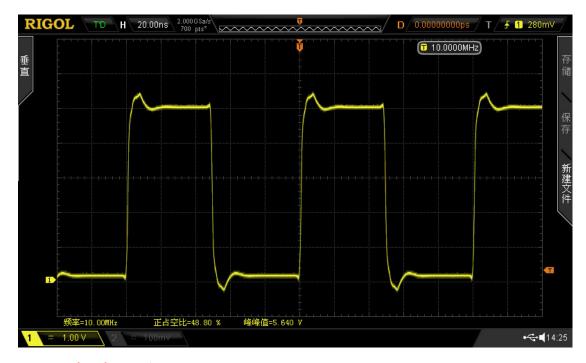
5V供电

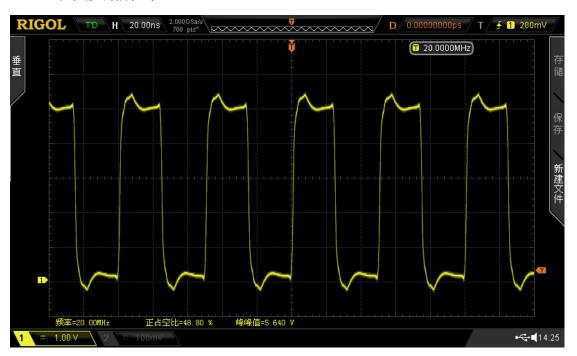
Q 注意事项

优秀の品质


- (1) 模块无反接、无限流保护,使用模块时一定要注意不要反接,否则容易损坏芯片或模块。
 - (3) 模块为低功耗模块,供电电源不超过5.5V。
- (4) 由于模块是高精度器件,为了避免不必要的干扰,建议使用线性电源供电。
- (5) 输入信号建议使用SMA接口,接触不良或劣质的线材可能导致信号衰减或者噪声过大,使得测量不准确。

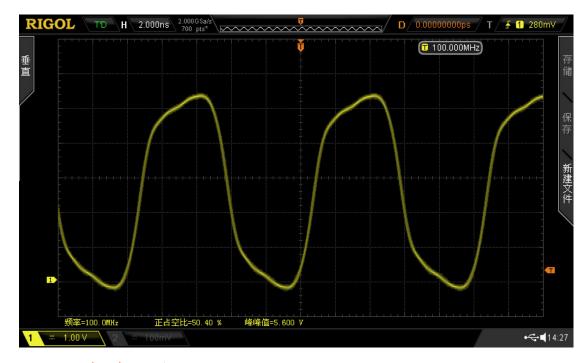
Q测试图


优秀の品质


100k 方波输出

1M 方波输出

10M 方波输出


20M 方波输出

30M 方波输出

50M 方波输出

100M 方波输出

1M 脉冲波输出

1M 脉冲波输出

100ns 脉冲输出

5ns 脉冲波输出

10ns 脉冲波输出